Name:

MATH 1001, Pop Quiz \#2, Spring 2003

1. (3 Points) What is your section number?

Answers varied, of course! =)
The next few questions refer to the weighted graph shown to the right. Note that this is a complete graph with four vertices $\left(K_{4}\right)$. Each question is worth 3 points.

2. How many Hamilton Circuits are there in this graph?

$$
N=4, \text { and there are }(N-1)!=(4-1)!=24 \text { circuits }
$$

3. How many of those would you have to check, using the Brute-Force Algorithm, to find the optimal circuit? (Don't make this harder than it is!)

All of them!

4. \qquad True/False: The Brute Force Algorithm is an efficient way to find an optimal circuit for a complete graph, even if the graph has hundreds-or thousands!-of vertices.

False - this is precisely the problem with the Brute Force Algorithm.
5. Find a Hamilton Circuit using the Nearest-Neighbor Algorithm, beginning at the vertex A.

Starting at A, the nearest neighbor is B. Between the remaining vertices, the closest is C. At this point we don't have any choice; there is only one vertex remaining, D, and so we go there before heading home to A. The final circuit is A, B, C, D, A.

