MATH 1001, Fair Division Quiz, Spring, 2003
Remember, there will be little or no partial credit given on questions in this quiz.

TRUE/FALSE (2 points each) Answer the following questions by writing a T or F in the blank.
___ T__ 1. If I split a cake with somebody using the "You Cut/I Choose" method, it is possible that my fair share will be worth more than 50% to me.

Look in your book: the chooser might get a piece worth more than 50% to her.
___ T __ 2. Whether or not my piece of a cake is a a fair share only depends on my perceptions, and not what any other player thinks about my piece.
\qquad 3. In the Lone Chooser method, with 3 players, the cake will be split into 6 pieces before the Chooser actually chooses anything.
\qquad 4. 10 players are splitting a cake using the Last Diminisher method, and it is P_{4} 's turn during the first round. If P_{4} thinks the current piece is worth exactly 10%, then she will choose to play, cut off a slice, and claim the new C-piece. (Think carefully here!)

If P_{4} chooses to play, he has to cut off part of the C-piece, which would make it worth less than 10%, so it wouldn't be a fair share anymore.
\qquad 5. If there are four players sharing a cake, then a "fair share" for a player is any piece that she thinks is worth at least $33 \frac{1}{3} \%$ of the total cake.
100% divided by 4 players is 25%.
5. My son and two nephews split a cupcake using the Lone Divider method. The Divider cuts three pieces, s_{1}, s_{2}, and s_{3}. The following table shows how much each piece is worth to each player.

	s_{1}	s_{2}	s_{3}
D	$33 \frac{1}{3} \%$	$33 \frac{1}{3} \%$	$33 \frac{1}{3} \%$
C_{1}	20%	20%	60%
C_{2}	20%	40%	40%

Write down C_{1} 's bid and C_{2} 's bid. (2 Points)

$$
\begin{array}{cc}
C_{1} & :\left\{s_{3}\right\} \\
C_{2} & :\left\{s_{2}, s_{3}\right\}
\end{array}
$$

Describe a fair division of the cupcake. (3 Points)
D gets s_{1}
C_{1} gets s_{3}
C_{2} gets s_{2}

