Name:

Section:

MATH 1001, Fair Division Quiz, Spring, 2003

Remember, there will be little or no partial credit given on questions in this quiz.

 $\mathrm{TRUE}/\mathrm{FALSE}$ (2 points each) Answer the following questions by writing a T or F in the blank.

<u>T</u> 1. If I split a cake with somebody using the "You Cut/I Choose" method, it is possible that my fair share will be worth more than 50% to me.

Look in your book: the chooser might get a piece worth more than 50% to her.

 T_2 2. Whether or not my piece of a cake is a fair share only depends on my perceptions, and not what any other player thinks about my piece.

 T_3 . In the Lone Chooser method, with 3 players, the cake will be split into 6 pieces before the Chooser actually chooses anything.

____F___4. 10 players are splitting a cake using the Last Diminisher method, and it is P_4 's turn during the first round. If P_4 thinks the current piece is worth exactly 10%, then she will choose to play, cut off a slice, and claim the new C-piece. (Think carefully here!)

If P_4 chooses to play, he has to cut off part of the C-piece, which would make it worth less than 10%, so it wouldn't be a fair share anymore.

____F___5. If there are *four* players sharing a cake, then a "fair share" for a player is any piece that she thinks is worth at least $33\frac{1}{3}\%$ of the total cake.

100% divided by 4 players is 25%.

5. My son and two nephews split a cupcake using the Lone Divider method. The Divider cuts three pieces, s_1 , s_2 , and s_3 . The following table shows how much each piece is worth to each player.

	s_1	s_2	s_3
D	$33\frac{1}{3}\%$	$33\frac{1}{3}\%$	$33\frac{1}{3}\%$
C_1	20%	20%	60%
C_2	20%	40%	40%

Write down C_1 's bid and C_2 's bid. (2 Points)

$$C_1 : \{s_3\} \\ C_2 : \{s_2, s_3\}$$

Describe a fair division of the cupcake. (3 Points)

$$D \text{ gets } s_1$$
$$C_1 \text{ gets } s_3$$
$$C_2 \text{ gets } s_2$$