These are not meant to be detailed solutions. If you can't figure out why a given answer is correct, talk to me or your TA.

1. i) b.

$$
\begin{aligned}
\frac{\tan (\theta)}{\sec (\theta)}+\frac{1}{\csc (\theta)} & =\frac{\tan (\theta)}{1 / \cos (\theta)}+\frac{1}{1 / \sin (\theta)}=\tan (\theta) \frac{\cos (\theta)}{1}+\sin (\theta) \\
& =\frac{\sin (\theta)}{\cos (\theta)} \cos (\theta)+\sin (\theta)=\sin (\theta)+\sin (\theta)
\end{aligned}
$$

ii) c.
iii) d. $\sin ^{-1}(\sin (3 \pi / 4))=\sin ^{-1}(1 / \sqrt{2})=\pi / 4$.
iv) d.
v) a.
2. a) $\sin ^{2} 30^{\circ}+\frac{1}{\sec ^{2} 390^{\circ}}=\sin ^{2} 30^{\circ}+\cos ^{2} 390^{\circ}=\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}=1$
b) $\tan \frac{\pi}{4}+\cos \frac{2 \pi}{3}=1-\frac{1}{2}=\frac{1}{2}$ (Draw a 45-45-90 and 30-60-90 triangle. Note that a point corresponding to the angle $2 \pi / 3$ was given to you in 1(ii).
c) $\csc \frac{\pi}{4}=\sqrt{2}-$ use the same triangle as you used in part (b).
3. $\cos \theta<0$ and $\tan \theta>0$ means θ must be in quadrant three. So to solve this problem you should draw the correct $3-4-5$ triangle in the third quadrant; $\cos \theta=-\frac{3}{5}=\frac{x}{r}$ implies that $r=5$, so $x=-3$. In quadrant three, $y<0$ so $y=-4$. Now you can write down the trig functions using the definitions:

$$
\begin{aligned}
\sin \theta=y / r=-4 / 5, & \csc \theta=r / y=-5 / 4 \\
\cos \theta=x / 4=-3 / 5, & \sec \theta=r / x=-5 / 3 \\
\tan \theta=y / x=4 / 3, & \cot \theta=x / y=4 / 3
\end{aligned}
$$

4. Given $y=-5 \sin \left(\frac{1}{2} x-\frac{\pi}{2}\right)$, we see that Amplitude $=|-5|=5$, Period $=T=\frac{2 p i}{1 / 2}=4 \pi$, and the Phase Shift is $\frac{\pi / 2}{1 / 2}=\pi$. If you're not sure how to graph a sin curve with this information, ask me or your TA. (Note that we have a negative sign out front, so the curve will go down first.)
