Here are some solutions to the sample problems.
(1) Given $y=3 \cos \left(\pi x-\frac{\pi}{2}\right)$, the amplitude is 3 , the period is 2 , and the phase shift is $1 / 2$. Here's a graph of one cycle.

(2) If $\sin \theta$ is positive and $\cos \theta<0$, we must be in quadrant II. You can even figure out what triangle to use; $\operatorname{since} \sin \theta=\frac{1}{2}=\frac{y}{r}$, this is a $30-60-90$ triangle where $x=-\sqrt{3}$. Hence

$$
\begin{array}{lrl}
\sin \theta & =\frac{y}{r}=\frac{1}{2} & \csc \theta=\frac{r}{y}=\frac{2}{1} \\
\cos \theta=\frac{x}{r}=-\frac{\sqrt{3}}{2} & \sec \theta=\frac{r}{x}=-\frac{2}{\sqrt{3}} \\
\tan \theta=\frac{y}{x}=-\frac{1}{\sqrt{3}} & \cot \theta=\frac{x}{y}=-\frac{\sqrt{3}}{1}
\end{array}
$$

(3) You can check these with a calculator; they're all found using 45-45-90 triangles.
(4) Show that

$$
\begin{aligned}
\frac{\cot (\theta) \sin (\theta)}{\sec (\theta)}+\frac{1}{\csc ^{2}(\theta)} & =\frac{\frac{\cos (\theta)}{\sin (\theta)} \sin (\theta)}{\frac{1}{\cos (\theta)}}+\frac{\sin ^{2}(\theta)}{1}=\frac{\cos (\theta)}{1} \frac{\cos (\theta)}{1}+\sin ^{2}(\theta) \\
& =\cos ^{2}(\theta)+\sin ^{2}(\theta)=1
\end{aligned}
$$

(5) In order, on the unit circle,
$(1,0),(\sqrt{3} / 2,1 / 2),(1 / \sqrt{2}, 1 / \sqrt{2})(1 / 2, \sqrt{3}),(-1 / 2, \sqrt{3}),(-1 / \sqrt{2}, 1 / \sqrt{2}),(-\sqrt{3} / 2,1 / 2),(-1,0)$
(6) $\cos ^{-1}(\cos (-\pi / 4))=\cos ^{-1}(1 / \sqrt{2})=\pi / 4$, because $\cos ^{-1}$ returns values between 0 and π.
(7) 95° is approximately 1.6581 radians. 1 radian is about 57.2958°.
(8) One cycle of the graph of $y=\tan \left(x-\frac{\pi}{2}\right)$ is shown here.

(9) Other Problems. (Ask me about any other problems; let me know if I've made a typo here so I can correct it for other people.)

Ch4Rev 90: : $\$ 20398.87$; 4.04; 17.5yrs
Ch4Rev 91: : $\$ 41668.97$
Ch5Rev 1: : $3 \pi / 4$
Ch5Rev 5: : 135°
Ch5Rev 25: : 1
Ch5Rev 61: : Amplitude $=8$; period $=4$.
Ch5Rev 69: : Amplitude $=2 / 3 ;$ period $=2$; phase shift $=6 / \pi$.
Ch5Rev 71: : $y=5 \cos \frac{x}{4}$
Ch6Rev 5: : $5 \pi / 6$
Ch6Rev 11: : $2 \sqrt{3} / 3$
Ch6Rev 13: : $3 / 5$
Ch6Rev 17: : $-\pi / 6$
Ch6Rev 21: : Hint: $\tan \theta \cot \theta=1$.
Ch6Rev 35: : (This is harder than what you'd have to do on an exam....)

