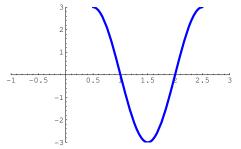
Here are some solutions to the sample problems.

(1) Given $y = 3\cos(\pi x - \frac{\pi}{2})$, the amplitude is 3, the period is 2, and the phase shift is 1/2. Here's a graph of one cycle.



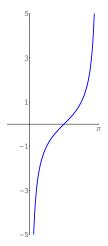
(2) If $\sin \theta$ is positive and $\cos \theta < 0$, we must be in quadrant II. You can even figure out what triangle to use; since $\sin \theta = \frac{1}{2} = \frac{y}{r}$, this is a 30 - 60 - 90 triangle where $x = -\sqrt{3}$. Hence

- (3) You can check these with a calculator; they're all found using 45 45 90 triangles.
- (4) Show that

$$\frac{\cot(\theta)\sin(\theta)}{\sec(\theta)} + \frac{1}{\csc^2(\theta)} = \frac{\frac{\cos(\theta)}{\sin(\theta)}\sin(\theta)}{\frac{1}{\cos(\theta)}} + \frac{\sin^2(\theta)}{1} = \frac{\cos(\theta)}{1}\frac{\cos(\theta)}{1} + \sin^2(\theta)$$
$$= \cos^2(\theta) + \sin^2(\theta) = 1$$

- (5) In order, on the unit circle,
- (1,0), $(\sqrt{3}/2, 1/2)$, $(1/\sqrt{2}, 1/\sqrt{2})(1/2, \sqrt{3})$, $(-1/2, \sqrt{3})$, $(-1/\sqrt{2}, 1/\sqrt{2})$, $(-\sqrt{3}/2, 1/2)$, (-1, 0)(6) $\cos^{-1}(\cos(-\pi/4)) = \cos^{-1}(1/\sqrt{2}) = \pi/4$, because \cos^{-1} returns values between 0 and π .
 - (7) 95° is approximately 1.6581 radians. 1 radian is about 57.2958°.

(8) One cycle of the graph of $y = \tan\left(x - \frac{\pi}{2}\right)$ is shown here.



- (9) Other Problems. (Ask me about any other problems; let me know if I've made a typo here so I can correct it for other people.)
 - Ch4Rev 90: : \$20398.87; 4.04; 17.5yrs Ch4Rev 91: : \$41668.97 Ch5Rev 1: : $3\pi/4$ Ch5Rev 5: : 135° Ch5Rev 25: : 1 Ch5Rev 61: : Amplitude = 8; period = 4. Ch5Rev 69: : Amplitude = 2/3; period = 2; phase shift = $6/\pi$. Ch5Rev 71: : $y = 5 \cos \frac{x}{4}$ Ch6Rev 5: : $5\pi/6$ Ch6Rev 11: : $2\sqrt{3}/3$ Ch6Rev 13: : 3/5Ch6Rev 17: : $-\pi/6$ Ch6Rev 21: : Hint: $\tan \theta \cot \theta = 1$.
 - Ch6Rev 35: : (This is harder than what you'd have to do on an exam....)