These solutions don't include all of the details, so please ask us if you can't figure out why an answer is correct.
(1) Multiple Choice
(i) (a). Statement (B) is false unless $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$.
(ii) (b). One solution is shown here:

$$
\begin{aligned}
\frac{1}{\sec (\theta)}+\frac{\cot (\theta)}{\csc (\theta)} & =\frac{1}{\frac{1}{\cos \theta}}+\frac{\frac{\cos \theta}{\sin \theta}}{\frac{1}{\sin \theta}}=\cos \theta+\frac{\cos \theta}{\sin \theta} \cdot \frac{\sin \theta}{1} \\
& =\cos \theta+\cos \theta=2 \cos \theta
\end{aligned}
$$

(iii) (a). $\sin \theta$ is an odd function, and $\cos \theta$ is an even function.
(iii) (c), i.e. the third graph from the left.
(2) (a) If $\cos \theta<0$ and $\tan \theta>0$, then θ is in Quadrant III. Specifically, draw a circle of radius $r=5$; then if you draw θ it should intersect the circle in Quadrant III at a point $(x, y)=(-4, y)$. Using the equation of a circle (or by drawing a right triangle and using the Pythagorean identity, which amounts to the same thing) you can find that $y=-3$. Then

$$
\begin{aligned}
\sin \theta & =\frac{y}{r}=-\frac{3}{5} \\
\tan \theta & =\frac{y}{x}=\frac{3}{4} \\
\sec \theta & =\frac{r}{x}=-\frac{5}{4}
\end{aligned}
$$

(b) Using the fact that the trig functions are periodic (so we can add/subtract multiples of 2π to the angles without changing the values),

$$
\begin{aligned}
-12 \cos \left(\frac{11 \pi}{4}\right)+4 \tan \left(-\frac{13 \pi}{3}\right) & =-12 \cos \left(\frac{3 \pi}{4}\right)+4 \tan \left(-\frac{\pi}{3}\right) \\
& =-12\left(-\frac{\sqrt{2}}{2}\right)+4(-\sqrt{3}) \\
& =6 \sqrt{2}-4 \sqrt{3}
\end{aligned}
$$

(3) You need to write down a function $f(x)=A \sin (\omega x-\phi)=A \sin (\omega(x-\phi / \omega))$ such that $|A|=3, T=2 \pi / \omega=1$ (which implies that $\omega=2 \pi$), and $\phi / \omega=-1 / 2$. One such function is

$$
f(x)=3 \sin (2 \pi(x+1 / 2))
$$

Ask us if you're not sure how to graph a cycle of this function.
(4) Using the equation $A=P\left(1+\frac{r}{n}\right)^{n t}$,
(a)

$$
\begin{aligned}
500 & =P\left(1+\frac{.05}{12}\right)^{120} \\
P & =500 /\left(1+\frac{.05}{12}\right)^{120} \cong 303.581 \text { or } \$ 303.581 \text { million }
\end{aligned}
$$

(b)

$$
\begin{aligned}
10 & =5\left(1+\frac{.05}{12}\right)^{12 t} \\
2 & =\left(1+\frac{.05}{12}\right)^{12 t} \\
\ln 2 & =\ln \left(1+\frac{.05}{12}\right)^{12 t}=12 t \ln \left(1+\frac{.05}{12}\right) \\
t & =\frac{\ln 2}{12 \ln \left(1+\frac{.05}{12}\right)} \cong 13.89 \text { years }
\end{aligned}
$$

(5) (a) $\cos ^{-1}\left(\cos \left(-\frac{3 \pi}{4}\right)\right)=\cos ^{-1}(-\sqrt{2} / 2)$. By definition of $\cos ^{-1} x$, this has to be an angle between 0 and π whose cosine is $\sqrt{2} / 2$. The only possible angle is $+\frac{3 \pi}{4}$.
(b) This is example 7 from your textbook; you can see a solution there.

