Implicit in any homework problem is that you must explain why your answer is correct, even if the problem does not ask for a formal proof. Writing problems should have complete explanations of your work, written in complete sentences with correct grammar.

Due: Thursday, 11/3

Homework Assignment

Regular Problems:

(1) Prove the following sequences diverge according to the definition in Section 16: (a) $a_n = n^2$

(b)
$$b_n = \sin\left(\frac{\pi n}{2}\right)$$

- (2) For each of the following, prove or give a counterexample.
 - (a) If $s_n \to s$, then s is an accumulation point of the set of numbers $\{s_n \mid n \in \mathbb{N}\}$.
 - (b) If s is an accumulation point of the set of numbers $\{s_n \mid n \in \mathbb{N}\}$, then $s_n \to s$.
- (3) For each of the following, prove or give a counterexample. You may use Theorem 17.1 in any proofs, but make sure it applies in the way you use it.
 - (a) If (s_n) converges and (t_n) diverges, then $(s_n t_n)$ must be divergent.
 - (b) If (s_n) and (s_n/t_n) are convergent sequences, then (t_n) must converge.
 - (c) If (s_n/t_n) converges, then t_n cannot converge to 0.
- (4) Use Theorem 17.1 to find the following limits. Justify each step.

(a)
$$\lim \frac{(n+1)^2}{n^3 - 5n^2 + 1}$$

(b) $\lim \frac{9n+1}{6-n}$

Writing Problem 1: Use Theorem 16.8 to prove that $s_n = \frac{3n^2 - 1}{2n^3 - 5n} \to 0.$

Writing Problem 2: Suppose (s_n) converges to $s \neq 0$ and $(s_n t_n)$ converges to L. Prove that (t_n) converges. (Hint/Warning: you cannot assume $s_n \neq 0$ for all n.)