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1. (10 points) Use a truth table to determine whether the following statements are logically equivalent.

If so, explain how this is demonstrated in the truth table; if not, give a situation in which their truth
values are different.

Statement 1: p = ¢
Statement 2: ~ (pA ~ q)
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2. (10 points) Consider the following implication: If z € N and y = m, then sin (zy) = 0.

(a) (4 points) Write the converse of the implication.

IF sin (Ktj)io, Fren xe N and U= .

(b) (6 points) Write the negation of the implication.

x € IN and Y=, and sin (xg) 20.
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3. (16 points) Write each statement using mathematical quantifiers and symbols where possible. Then
write the negation of each statement, again using quantifiers and other symbols. You should not just
put the negation symbol in front of the statement: rather, change quantifiers and other symbols as
needed to express the negation as a new statement.

(a) (8 points) For all positive real numbers z, there is a real number y such that f/(zy) =0 or f'(zy)
is undefined.

Statement: V“GTZ,?(-?OI g ‘jem"a _ﬁ '(7(')3: o V ﬁc(x«.d (S Wade Q‘r\foi
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(b) (8 points) There exists an integer n such that v2 < n < /2 + 1.

Statement: 3 n é Z B! \/ZLV'\ < Jl-—*“l .

Negation: V\/\ fal Z/) a é u}: \/ N Z U—Z“' f °

4. (4 points) Give a BRIEF (2-3 sentences at most) description of how to prove a mathematical state-
ment p by contradiction.
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Let A, B, and C be subsets of a universal set U. Prove: A\ (BNC) = (A\ B)U(A\C).

Proof: To show that A\ (BNC) C (A\ B)U(A\C), take some = € A\ (BNC). Then, by definition, z € A
and z ¢ BNC. x ¢ BNCisequivalent tox ¢ Borx ¢ C [~(x € BAz €C) <= x ¢ BVax ¢ C(C]. So
x€A\Borze A\C. Le.,x € (A\ B)U (A\ C), which shows that A\ (BNC) C (A\ B)U(A\C).

Conversely, suppose z € (A\ B) U (A \ C). Without loss of generality, assume that € A\ B. Then z € A
andx ¢ B. Sox ¢ BNC. Sox € A\ (BNC). Thus (A\B)U(A\C) C A\ (BNC), which shows that the

two sets are equal.
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7. (16 points) Consider the following relation on R: xRy iff there exists a real number r # 0 such that
z =ry. (In other words, zRy if you can multiply % by some nonzero real number to get z.)

(a) (12 points) Prove that R is an equivalence relation.
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(b) (4 points) Describe the equivalence class of z = () in this relation.
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8. (8 points) Give a counterexample to show the following equality is not true: not x= Yy : 43; (2

(Ax B)U(C x D) = (AUC) x (BU D). (oc ry=rE, ede.)
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8) Give a counterexample to show the following equality is not true:

(Ax B)U(C x D)= (AUC) x (BUD).

Solution. One can produce (infinitely) many such counterexamples. Per-
phaps, one of the simplest looks as follows. Let A = B = {%} and
C = D = {#}. Then the Cartesian product A x B is the set {(3, %)}
and C' x D = {(#,#)}. Thus,

(AX B)U(Cx D) = {3 %), (h #)}
On the other hand, since AUC = BU D = {5, #}, then
(AUC) x (BUD) = {(%, %), (F, M), (#, %), (&, &}

So the set on the right-hand side of the given identity is strictly larger than
the set on the left-hand side.



