Math 3283W - Exam 2 Review Worksheet ${ }^{1}$

November 5, 2012

$\S 7$ - Functions

1. For a function $f: A \rightarrow B$, the function $g: B \rightarrow A$ is called
a left inverse for f if $g \circ f$ is the identity on A (i.e., $g \circ f=\operatorname{id}_{A}$) and
a right inverse for f if $f \circ g$ is the identity on B (i.e., $f \circ g=\operatorname{id}_{B}$).
(a) Prove: f has a left inverse if and only if f is injective.
(b) Prove: f has a right inverse if and only if f is surjective.
2. Let A, B, C be sets such that $C \subseteq B$. Prove that $f^{-1}(B \backslash C)=A \backslash f^{-1}(C)$.
3. Let A, B, C be sets such that $C \subseteq B$.
(a) Prove: if f is surjective, then $f\left(f^{-1}(C)\right)=C$.
(b) Give an example of an function f such that $f\left(f^{-1}(C)\right) \subsetneq C$.

§8-Cardinality

1. For S and T sets, state the definition of $|S| \leq|T|$.
2. Give an example of a set $S \subsetneq \mathbb{R}$ such that
(a) S is denumerable.
(b) S is uncountable.

Prove your claims. You may use the fact that \mathbb{R} is uncountable.
3. Recall, the power set $\mathcal{P}(S)$ of a set S is defined by the property

$$
A \in \mathcal{P}(S) \Longleftrightarrow A \subseteq S
$$

(a) What is $\mathcal{P}(\{a, b, c, d\})$?
(b) Prove: for every set $S,|S| \leq|\mathcal{P}(S)|$. (In fact, $|S|<|\mathcal{P}(S)|$, though you are not being asked to prove this stronger statement.)
4. Prove: if S is countable, then there exists a proper subset T of S such that $S \sim T$.

§10-Induction

[^0]1. Prove using induction: $1+2+3+\cdots+n=\frac{1}{2} n(n+1)$ for all $n \in \mathbb{N}$.
2. Prove using induction: $1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{1}{4} n^{2}(n+1)^{2}$ for all $n \in \mathbb{N}$.
3. Prove using (1) and (2): $1^{3}+2^{3}+3^{3}+\cdots+n^{3}=(1+2+3+\cdots+n)^{2}$ for all $n \in \mathbb{N}$.

§11-Fields

1. Prove that $|x y|=|x| \cdot|y|$ for all $x, y \in \mathbb{R}$.
2. Prove that $|x+y| \leq|x|+|y|$ for all $x, y \in \mathbb{R}$.

§12-Completeness

1. State the definition of supremum and infimum for a set S.
2. For each set listed below, determine whether the supremum and/or infimum exist. If so, determine the value of the supremum and/or infimum. If not, state why.
(a) $\left\{\frac{n}{n+1}: n \in \mathbb{N}\right\}$
(b) $(-\infty, 4)$
(c) $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$
3. Let S and T be bounded, nonempty sets such that $S \subseteq T \subseteq \mathbb{R}$. Prove

$$
\inf T \leq \inf S \leq \sup S \leq \sup T
$$

§13-Topology

1. Consider the following sets:
(a) $\{\pi\}$
(b) \mathbb{Q}
(c) $\bigcap_{n=1}^{\infty}\left(0, \frac{1}{n}\right)$
(d) $(x, y]$ where $x<y$ are real numbers.

For each set, determine and prove:

- Is the set open, closed, both, or neither?
- The boundary and interior of the set.

2. (a) Prove: $\operatorname{cl}(S \cap T) \subseteq \operatorname{cl}(S) \cap \operatorname{cl}(T)$ (Hint: Use the characterization of $\operatorname{cl}(S)$ that $x \in \operatorname{cl}(S)$ if and only if every neighborhood of x intersects S non-trivially.)
(b) Give an example of S and T such that $\operatorname{cl}(S \cap T) \subsetneq \operatorname{cl}(S) \cap \operatorname{cl}(T)$.
3. Let $S \subseteq \mathbb{R}$ be nonempty, open, and bounded above. Prove that $\sup S \notin U$.

[^0]: ${ }^{1}$ This worksheet is far from inclusive. Do not assume that doing only these problems will fully prepare you for Exam 2.

