November 5, 2012

§7 - Functions

1. For a function $f: A \to B$, the function $g: B \to A$ is called

a **left inverse** for f if $g \circ f$ is the identity on A (i.e., $g \circ f = id_A$)

and

a **right inverse** for f if $f \circ g$ is the identity on B (i.e., $f \circ g = id_B$).

- (a) Prove: f has a left inverse if and only if f is injective.
- (b) Prove: f has a right inverse if and only if f is surjective.
- 2. Let A, B, C be sets such that $C \subseteq B$. Prove that $f^{-1}(B \setminus C) = A \setminus f^{-1}(C)$.
- 3. Let A, B, C be sets such that $C \subseteq B$.
 - (a) Prove: if f is surjective, then $f(f^{-1}(C)) = C$.
 - (b) Give an example of an function f such that $f(f^{-1}(C)) \subsetneq C$.

§8 - Cardinality

- 1. For S and T sets, state the definition of $|S| \leq |T|$.
- 2. Give an example of a set $S \subsetneq \mathbb{R}$ such that
 - (a) S is denumerable.
 - (b) S is uncountable.

Prove your claims. You may use the fact that \mathbb{R} is uncountable.

3. Recall, the power set $\mathcal{P}(S)$ of a set S is defined by the property

$$A \in \mathcal{P}(S) \iff A \subseteq S.$$

- (a) What is $\mathcal{P}(\{a, b, c, d\})$?
- (b) Prove: for every set S, $|S| \leq |\mathcal{P}(S)|$. (In fact, $|S| < |\mathcal{P}(S)|$, though you are not being asked to prove this stronger statement.)
- 4. Prove: if S is countable, then there exists a proper subset T of S such that $S \sim T$.

§10 - Induction

¹This worksheet is far from inclusive. Do **not** assume that doing only these problems will fully prepare you for Exam 2.

- 1. Prove using induction: $1 + 2 + 3 + \cdots + n = \frac{1}{2}n(n+1)$ for all $n \in \mathbb{N}$.
- 2. Prove using induction: $1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{1}{4}n^2(n+1)^2$ for all $n \in \mathbb{N}$.
- 3. Prove using (1) and (2): $1^3 + 2^3 + 3^3 + \dots + n^3 = (1 + 2 + 3 + \dots + n)^2$ for all $n \in \mathbb{N}$.

§11 - Fields

- 1. Prove that $|xy| = |x| \cdot |y|$ for all $x, y \in \mathbb{R}$.
- 2. Prove that $|x + y| \le |x| + |y|$ for all $x, y \in \mathbb{R}$.

§12 - Completeness

- 1. State the definition of supremum and infimum for a set S.
- 2. For each set listed below, determine whether the supremum and/or infimum exist. If so, determine the value of the supremum and/or infimum. If not, state why.
 - (a) $\left\{\frac{n}{n+1} : n \in \mathbb{N}\right\}$ (b) $(-\infty, 4)$ (c) $\left\{\frac{1}{n} : n \in \mathbb{N}\right\}$
- 3. Let S and T be bounded, nonempty sets such that $S \subseteq T \subseteq \mathbb{R}$. Prove

 $\inf T \le \inf S \le \sup S \le \sup T.$

§13 - Topology

- 1. Consider the following sets:
 - (a) $\{\pi\}$
 - (b) \mathbb{Q}
 - (c) $\bigcap_{n=1}^{\infty} (0, \frac{1}{n})$
 - (d) (x, y] where x < y are real numbers.

For each set, determine and prove:

- Is the set open, closed, both, or neither?
- The boundary and interior of the set.
- 2. (a) Prove: $\operatorname{cl}(S \cap T) \subseteq \operatorname{cl}(S) \cap \operatorname{cl}(T)$ (*Hint:* Use the characterization of $\operatorname{cl}(S)$ that $x \in \operatorname{cl}(S)$ if and only if every neighborhood of x intersects S non-trivially.)
 - (b) Give an example of S and T such that $\operatorname{cl}(S \cap T) \subsetneq \operatorname{cl}(S) \cap \operatorname{cl}(T)$.
- 3. Let $S \subseteq \mathbb{R}$ be nonempty, open, and bounded above. Prove that $\sup S \notin U$.