Study Guide for Exam 1: Solutions

1. (a) First, recall¹ that the disjuction $A \vee B$ of two statements A and B is true if and only if at least one of the statements is true, and the conjunction $A \wedge B$ is true only when *both* A and B are true.

Now, let R be a true statement, while P and Q are false. Then the disjunction $(P \land Q) \lor R$ is true, but the conjunction P $\land (Q \lor R)$ is false.

Remark. Compare the given formulas with the ones given in exercise 1.14(c)-(f).

(b) A quick reminder: the implication² $A \Rightarrow B$ is false only in the case when A is a true statement and B is false.

Solution 1.

Comparing the truth tables for both of the given statements, we conclude that they are equivalent:

		P	Q	R	$P \wedge Q$	$(P \land Q) \Rightarrow R$	
		Т	Т	Т	Т	Т	
		T	Т	F	Т	\mathbf{F}	
		T	F	Т	F	Т	
		T	F	F	F	Т	
		F	Т	Т	F	Т	
		F	Т	F	F	Т	
		F	F	Т	F	Т	
		F	F	F	F	Т	
P	Q	R	<i>P</i> =	$\Rightarrow R$	$Q \Rightarrow R$	$R \mid (P \Rightarrow R) \lor ($	$Q \Rightarrow R$
	~						• /
Т	T	Т	[Γ	T	T	<u> </u>
T T	T T	T F	I	Г <u>-</u>	T F	T F	<u> </u>
T T T	T T F	T F T	I	Г <u>-</u> Г	T F T	T F T	
T T T T	T T F F	T F T F	I I I I	<u>ר</u> ק ר ק	T F T T	T F T T	
T T T T F	T T F F T	T F T F T	T I I T	Г 	T F T T T	T F T T T	
T T T F F	T T F F T T	T F T F T F	I I I I		T F T T T F	T F T T T T	. ,
T T T F F	T T F F T T F	T F T F T F T	I I I I	Г ? ? Г Г Г Г	T F T T F T	T F T T T T T	

Solution 2.

Since for any two statements A and B, the implication $A \Rightarrow B$ is equivalent to the disjunction $\sim A \lor B$, then

$$(P \land Q) \Rightarrow R = \sim (P \land Q) \lor R \stackrel{\text{De Morgan}}{=} (\sim P \lor \sim Q) \lor R.$$

Similarly,

$$(P \Rightarrow R) \lor (Q \Rightarrow R) = (\sim P \lor R) \lor (\sim Q \lor R) = (\sim P \lor \sim Q) \lor R.$$

Thus, the given statements are equivalent.

¹Chapter 1, pp.3-4

 $^{^{2}}$ Chapter 1, p.5

- 2. (a) $\forall a \in \mathbb{R} \,\forall b \in \mathbb{R}, \, P(a, b) \Rightarrow \left(P\left(a, \frac{a+b}{2}\right) \land P\left(\frac{a+b}{2}, b\right) \right).$
 - (b) $\forall x \in \mathbb{R}, (P(0, x) \land P(x, 1)) \Rightarrow P(x^2, x).$
 - (c) $\exists x \in \mathbb{R} \ni P(0,x) \land P(x,1) \land \sim P(x^2,x).$
- 3. (a) Let A and B be subsets of \mathbb{R} . Then the given statement p is, basically, the implication $r \Rightarrow s$, where r is the statement

the intersection $A \cap B$ is infinite,

and the statement s reads

both A and B are infinite.

Recall³ that the *contrapositive* of an implication $r \Rightarrow s$ is the implication $\sim s \Rightarrow \sim r$. In our case

 $\sim r$: the intersection $A \cap B$ is finite,

 \sim s: at least one of the sets A and B is finite.

Hence, the contrapositive of p can be stated as

if at least one of the sets A and B is finite, then $A \cap B$ is finite.

(b) Let r and s be as above. By definition⁴, the *converse* of an implication $r \Rightarrow s$ is the implication $s \Rightarrow r$. In our case it reads

if both A and B are infinite sets, then the intersection $A \cap B$ is infinite.

(c) The converse of p is false. Here is a counterexample: let A be the set of all even integers and B be the set of all odd integers. Then both A and B are infinite, but $A \cap B = \emptyset$ is a finite set.

Remark. Make sure to know the difference between contrapositive, converse, inverse and negation of an implication $r \Rightarrow s$:

	Formula	Remarks
Contrapositive	$\sim s \Rightarrow \sim r$	It is logically equivalent to the orig-
		inal implication $r \Rightarrow s$.
Converse	$s \Rightarrow r$	Be careful. It is not equivalent to
		the original statement $r \Rightarrow s$.
Inverse	$\sim r \Rightarrow \sim s$	It is logically equivalent to the con-
		verse.
Negation	$r \wedge \sim s$	The negation of an implication is
		not an implication.
		<i>Exercise.</i> Let r be the statement
		"you give a mouse a cookie", and
		s denote the statement "he will ask
		for a glass of milk". Then the im-
		plication $r \Rightarrow s$ is a popular saying.
		How does the negation of this im-
		plication look like?

 3 Chapter 1, p.21

 $^{^{4}}$ Chapter 1, p.22