Study Guide for Exam 1: Solutions

1. (a) First, recall ${ }^{1}$ that the disjuction $A \vee B$ of two statements A and B is true if and only if at least one of the statements is true, and the conjunction $A \wedge B$ is true only when both A and B are true.
Now, let R be a true statement, while P and Q are false. Then the disjunction $\underbrace{(P \wedge Q)}_{F} \vee \underbrace{R}_{T}$ is true, but the conjunction $\underbrace{P}_{F} \wedge \underbrace{(Q \vee R)}_{T}$ is false.
Remark. Compare the given formulas with the ones given in exercise 1.14(c)-(f).
(b) A quick reminder: the implication ${ }^{2} A \Rightarrow B$ is false only in the case when A is a true statement and B is false.

Solution 1.

Comparing the truth tables for both of the given statements, we conclude that they are equivalent:

		P	Q	R	$P \wedge Q$	$(P \wedge Q) \Rightarrow R$	
		T	T	T	T	T	
		T	T	F	T	F	
		T	F	T	F	T	
		T	F	F	F	T	
		F	T	T	F	T	
		F	T	F	F	T	
		F	F	T	F	T	
		F	F	F	F	T	
P	Q	R	$P \Rightarrow R$		$Q \Rightarrow R$	(P ${ }^{\text {a }}$ ($) \vee(Q \Rightarrow R)$	
T	T	T	T	T	T	T	
T	T	F	F	F	F	F	
T	F	T		T	T	T	
T	F	F	F	F	T	T	
F	T	T		T	T	T	
F	T	F		T	F	T	
F	F	T		T	T	T	
F	F	F		,	T	T	

Solution 2.

Since for any two statements A and B, the implication $A \Rightarrow B$ is equivalent to the disjunction $\sim A \vee B$, then

$$
(P \wedge Q) \Rightarrow R=\sim(P \wedge Q) \vee R \stackrel{\text { De Morgan }}{=}(\sim P \vee \sim Q) \vee R .
$$

Similarly,

$$
(P \Rightarrow R) \vee(Q \Rightarrow R)=(\sim P \vee R) \vee(\sim Q \vee R)=(\sim P \vee \sim Q) \vee R
$$

Thus, the given statements are equivalent.

[^0]2. (a) $\forall a \in \mathbb{R} \forall b \in \mathbb{R}, P(a, b) \Rightarrow\left(P\left(a, \frac{a+b}{2}\right) \wedge P\left(\frac{a+b}{2}, b\right)\right)$.
(b) $\forall x \in \mathbb{R},(P(0, x) \wedge P(x, 1)) \Rightarrow P\left(x^{2}, x\right)$.
(c) $\exists x \in \mathbb{R} \ni P(0, x) \wedge P(x, 1) \wedge \sim P\left(x^{2}, x\right)$.
3. (a) Let A and B be subsets of \mathbb{R}. Then the given statement p is, basically, the implication $r \Rightarrow s$, where r is the statement
the intersection $A \cap B$ is infinite,
and the statement s reads
$$
\text { both } A \text { and } B \text { are infinite. }
$$

Recall ${ }^{3}$ that the contrapositive of an implication $r \Rightarrow s$ is the implication $\sim s \Rightarrow \sim r$. In our case
$\sim r$: the intersection $A \cap B$ is finite,
$\sim s$: at least one of the sets A and B is finite.

Hence, the contrapositive of p can be stated as

$$
\text { if at least one of the sets } A \text { and } B \text { is finite, then } A \cap B \text { is finite. }
$$

(b) Let r and s be as above. By definition ${ }^{4}$, the converse of an implication $r \Rightarrow s$ is the implication $s \Rightarrow r$. In our case it reads
if both A and B are infinite sets, then the intersection $A \cap B$ is infinite.
(c) The converse of p is false. Here is a counterexample: let A be the set of all even integers and B be the set of all odd integers. Then both A and B are infinite, but $A \cap B=\varnothing$ is a finite set.
Remark. Make sure to know the difference between contrapositive, converse, inverse and negation of an implication $r \Rightarrow s$:

	Formula	Remarks
Contrapositive	$\sim s \Rightarrow \sim r$	$\begin{array}{l}\text { It is logically equivalent to the orig- } \\ \text { inal implication } r \Rightarrow s .\end{array}$
Converse	$s \Rightarrow r$	$\begin{array}{l}\text { Be careful. It is not equivalent to } \\ \text { the original statement } r \Rightarrow s .\end{array}$
Inverse	$\sim r \Rightarrow \sim s$	$\begin{array}{l}\text { It is logically equivalent to the con- } \\ \text { verse. }\end{array}$
Negation	$r \wedge \sim s$	$\begin{array}{l}\text { The negation of an implication is } \\ \text { not an implication. } \\ \text { Exercise. Let } r \text { be the statement } \\ \text { " }\end{array}$
you give a mouse a cookie", and		
denote the statement "he will ask		
for a glass of milk". Then the im-		
plication $r \Rightarrow s$ is a popular saying.		
How does the negation of this im-		
plication look like?		

[^1]
[^0]: ${ }^{1}$ Chapter 1, pp.3-4
 ${ }^{2}$ Chapter 1, p. 5

[^1]: ${ }^{3}$ Chapter 1, p. 21
 ${ }^{4}$ Chapter 1, p. 22

