Math 3283W: solutions for skills problems due 25 September

(5.4) (a) $A \cap B=\{2,4,6,8\} \cap\{1,2,3,4\}=\{2,4\}$.
(b) $A \cup B=\{2,4,6,8\} \cup\{1,2,3,4\}=\{1,2,3,4,6,8\}$.
(c) $A \backslash B=\{2,4,6,8\} \backslash\{1,2,3,4\}=\{6,8\}$.
(d) $B \cap C=\{1,2,3,4\} \cap\{5,6,7\}=\emptyset$.
(e) $B \backslash C=\{1,2,3,4\} \backslash\{5,6,7\}=\{1,2,3,4\}$.
$(f)(B \cup C) \backslash A=(\{1,2,3,4\} \cup\{5,6,7\}) \backslash\{2,4,6,8\}=\{1,2,3,4,5,6,7\} \backslash$ $\{2,4,6,8\}=\{1,3,5,7\}$.
(g) $(A \cap C) \backslash B=(\{2,4,6,8\} \cap\{5,6,7\}) \backslash\{1,2,3,4\}=\{6\} \backslash\{1,2,3,4\}=\{6\}$.
(h) $C \backslash(A \cup B)=\{5,6,7\} \backslash(\{2,4,6,8\} \cup\{1,2,3,4\})=\{5,6,7\} \backslash\{1,2,3,4,6,8\}=$ $\{5,7\}$.
(5.5) See "diagram page".
(5.6) (a) $(A \cup B) \cup(U \backslash A)=(A \cup(U \backslash A)) \cup B=U \cup B=U$.
(c) $A \cap((B \cup(U \backslash A))=(A \cap B) \cup(A \cap(U \backslash A))=(A \cap B) \cup \emptyset=A \cap B$.
(e)

$$
\begin{aligned}
(A \cup B) \cap(A \cup(U \backslash B)) & =((A \cup B) \cap A) \cup((A \cup B) \cap(U \backslash B)) \\
& =[(A \cap A) \cup(B \cap A)] \cup[(A \cap(U \backslash B)) \cup(B \cap(U \backslash B))] \\
& =A \cup(A \cap B) \cup(A \backslash B) \cup \emptyset \\
& =A
\end{aligned}
$$

(5.7) (a) See "diagram page".
(b) $A \Delta A=(A \backslash A) \cup(A \backslash A)=\emptyset \cup \emptyset=\emptyset$.
(c) $A \Delta \emptyset=(A \backslash \emptyset) \cup(\emptyset \backslash A)=A \cup \emptyset=A$.
(d) $A \Delta U=(A \backslash U) \cup(U \backslash A)=\emptyset \cup(U \backslash A)=U \backslash A$.
(5.16) (b) and (d) allow us to conclude $x \notin A \backslash B . x$ could belong to both A and B and the statement of (a) would still be true, so (a) does not yield the desired conclusion; neither does (c), as the statement of (c) implies $x \in A \backslash B$ or $x \in B \backslash A$ but does not tell us which of these two must hold.
venn Diagrams for skills problems due 9/25 (Math 3283W)

$5.7(a)$

the set of elements of $A \cup B$ belonging to A or B but not both

$$
\begin{aligned}
(A \Delta B) & =(A \cup B) \backslash(A \cap B) \\
& =(A \backslash B) \cup(B \backslash A)
\end{aligned}
$$

