MATH 3283W Fall 2012

Skills problems 5: Solutions

7.5 a) Let A= {a,b} and B = {1,2,3}. A function f : A — B is determined by its values
on the elements of the domain A. Hence, there are as many functions from A to B
as there are ways to pick elements of B for f(a) and f(b). Namely, since |B| = 3,
there are three possible values for f(a) and three possible values for f(b). Thus,
there are[[] 3 - 3 = 9 possible functions from A to B.
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There are no surjective functions from A to B as one can observe directly from
the diagrams above: in each case, at least one element of the codomain B remains
“unhit“. More formally, notice that since, by definition, a function maps an ele-
ment of its domain to a single element of the codomain, then there are at most as
many elements in the range of a function as there are elements in its domain. In
our case, dom(f) = A contains exactly two elements, while B has three. Hence,
Irg(f)| <2 < |BJ, and we conclude that the equality B = rng(f) cannot hold.

Six functions corrsponding to diagrams 2, 3,4, 6,7, 8 drawn above are injective. For-
mally, one can count all injective functions from A to B as follows. First, we choose
a value for f(a) - it can be either one of the elements of set B = {1, 2,3}. Next, we
would like to set a value for f(b). If we want f to be injective, then f(b) cannot
be equal to f(a). We end up having only two possible values for f(b). Therefore,
there are 3 - 2 = 6 injective functions from A to B.

b) Let A = {a,b,c}, B = {1,2}. As in part a), the number of functions from A to
B is equal to the number of ways to assign elements of B to f(a), f(b) and f(c).
Totally, there are 2 -2 -2 = 8 ways to do that. The corresponding functions are
schematically shown on the diagrams below.
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There are no injective functions from A to B. Indeed, since there are only two
elements in set B, then at least two of the elements f(a), f(b), f(c) have to be
equal (pigenhole principle).

On the other hand, as one see from the diagrams, there are plenty of surjective
functions. To count them, notice that there are only two non-surjective functions
from A to B. Namely, one of them sends all elements of A to 1 and the other one
maps everything to 2. Since totally there are eight functions from A to B, then
exactly 8 — 2 = 6 of them are surjective.

c) We just need to generalize the argument we used in parts a) and b). A function
f A — Bis completely determined by the list of its values f(ay), f(az),..., f(am),
where A = {ay,...,a,}. Since each f(a;) is an element of B, it may take one of
n = |B| possible values. Hence, there are p-n...n = n™ distinct ways to assign
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values to f(aq), f(as), ..., f(ay). So there are n™ different functions from A to B.

7.7 a) Function f is injective. Indeed, suppose that f(n;) = f(ns) for some ny,ny € N.
It means precisely that n; + 3 = ny + 3. Then, subtracting 3 from both sides, we
obtain n; = nas.

The function is not surjective: 1 € N, but there is no n € N such that n + 3 = 1.

b) Function f is injective, the proof is essentially the same as in part a). Namely, if
f(n1) = f(ngy) for some nq,ny € Z, then ny —5 = ny — 5 and the equality n; = no
follows immediately.

Function f is surjective. Indeed, let m € Z. Then f(m +5) = (m+5) —5=m.
Thus, any element of the codomain of f is in the range of f.

Since f is injective and surjective, it is bijective.

d) To check f for injectivity, suppose that f(z1) = f(z2) for some zq,29 € [1,00).
By definition of f, it means that 3 — x; = 23 — x5. We rewrite this equation as

323 = 1119 = (21—22) (X321 T0+23) = 1129 = (21—20) (2342120 +25—1) = 0.
Notice now that since zy,xo > 1, then 2% + 129 + 23 — 1 > 2 > 0. Thus, the
above identity is satisfied only when z; = z5. It implies that function f is injective.

Now, let y € [0,00) be an element of the codomain of function f. If we would
like to prove that f is surjective, then we need to show that f(x) = y for some
x € [1,00). In other words, we need to show that the equation 2°> —x = y has a
solution in the interval [1, 00). To this end, recall the intermediate value theorem:

Theorem 1. Let f be a function continuous on an interval [a,b]. If y is a number
between (or equal to) f(a) and f(b), then there exists a point x € [a,b] such that

flz)=y.

In our case, we take a = 1, b = y + 1 and we claim that f(a) <y < f(b). Since
f(1) =0 and y > 0, the first inequality is automatic, and we just need to verify
that y < (y +1)* — (y + 1). This follows from the following observation:
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(y+1°—(y+1)—y=9"+3y"+y >0.
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Thus, the hypothesis of the intermediate value theorem is satisfied, and it follows
now that the equation z® — z = y has a solution in the interval [1;y+1) C [1; 00).
We conclude that f is surjective.

7.9 a) Recall that in order to show that f is injective, one needs to prove that the implica-
tion f(x1) = f(z2) = a1 = 2 holds for all x1, 29 € dom(f). But in the given case
a proof of the converse implication E| x1 = x9 = f(x1) = f(x9) is provided. This is
not equivalent to the desired statement.

b) In the fourth sentence an assumption x; = x5 is made, but this is the identity that
we actually need to prove.

¢) This is a valid proof of the contrapositive of the implication f(z1) = f(x2) =
x1 = xo. Since the contrapositive is logically equivalent to an original statement,
everything is OK here.

d) This is a proof of the inverse of the desired implication f(x;) = f(x2) = x1 = .
One cannot conclude from it that f is injective.

e) This is just a verification of injectivity of function f in a very special case, when
x1 =1 and z9 = 2. The general statement of the theorem does not follow from it.

f) Everything is correct.

1, k is odd
710 a) f(k) = { k is even.
b) f(k )—k+1
c) f(k) =
d) f(k) =
7.15 a) By definition of pre-image, f~'(f(C)) = {z € Alf(z) € f(C)}. Now, if z € C,

then f(x) € f(C). Hence, z € f~'(f(C)). Therefore, C C f~1(f(C)).

b) Let € f~1(D). By definition of pre-image, it means that f(x) € D. Hence,
f(f~H(D)) € D.

d) First, we are going to show that f(C1UCy) C f(C)U f(Cy). Let y € f(CLUCY).
Then there exists x € C; U Cy such that f(z) = y. Since x € C; U Csy, then
x € Cy or x € Cy. Hence, f(z) € f(Cy) or f(z) € f(Cy). That means exactly
that y € f(C1) U f(Cy), and the desired inclusion f(C; U Cy) C f(Cy) U f(Cy)
follows.

Now, we would like to show that the inclusion f(C; U Cy) D f(C1)U f(Cs) holds
as well. Let y € f(Cy)U f(Cy). Theny € f(Cy) or y € f(Cy). Hence, we can find
x € Cy or z € Cy such that f(x) = y. This is equivalent to saying that y = f(z)
for some z € Cy U Cy. Therefore, y € f(Cy U Cy) and the inclusion follows.

2Tt is, in fact, just a part of the general definition of a function and has nothing to do with injectivity.
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