Take-home writing problems 1: Solutions

1. a) If $S \subseteq T$, then $|S| \leq|T|$.

Proof. If $S=\varnothing$, then $|S|=0$ and the statement follows. Otherwise, since any element of S belongs to T, then we can define a function $i: S \rightarrow T$ by setting $i(s)=s$ for all $s \in S$. Function i is clearly injective (indeed, an equality $i\left(s_{1}\right)=i\left(s_{2}\right)$ means exactly that $\left.s_{1}=s_{2}\right)$. Hence, by definition $8.14,|S| \leq|T|$.
b) $|S| \leq|S|$

Proof. Since for any set S (including the case $S=\varnothing$) the containment $S \subseteq S$ holds, then by part a) we get $|S| \leq|S|$.
c) If $|S| \leq|T|$ and $|T| \leq|U|$, then $|S| \leq|U|$.

Proof. The case when $S=\varnothing$ is easy. Indeed, in this case we have $|S|=0 \leq|U|$, no matter what set U is.
Now, assume that $S \neq \varnothing$. Then, according to definition 8.14, the condition $|S| \leq|T|$ means exactly that there is an injective function $f: S \rightarrow T$. Moreover, since $|T| \leq|U|$, then there is an injection $g: T \rightarrow U$. We claim that the composition $g \circ f: S \rightarrow U$ is an injective function as well. Indeed, if for some $s_{1}, s_{2} \in S$ the equality $g\left(f\left(s_{1}\right)\right)=g\left(f\left(s_{2}\right)\right)$ holds, then due to injectivity of g, we must have $f\left(s_{1}\right)=f\left(s_{2}\right)$. Since f is injective, then $s_{1}=s_{2}$, and our claim follows.
So we got an injective function from S to U. Thus $|S| \leq|U|$.
d) If $m, n \in \mathbb{N}$ and $m \leq n$, then $|\{1,2, \ldots, m\}| \leq|\{1,2, \ldots, n\}|$.

Proof. Since $m \leq n$, then $\{1,2, \ldots, m\}$ is a subset of $\{1,2, \ldots, n\}$. Now, the desired statement follows from part a) proved above.
2. Use Theorem 8.15 and the Schröder-Bernstein Theorem to provide a simpler proof than the one given in class that $[0,1] \sim[0,1)$.

Proof. According to the Schröder-Bernstein Theorem, proving that $[0,1] \sim[0,1)$ amounts to showing that $|[0,1]| \leq|[0,1)|$ and $|[0,1)| \leq|[0,1]|$.
First, let us prove that $|[0,1]| \leq|[0,1)|$. By definition 8.14 , all we have to do is to construct an injective function $f:[0,1] \rightarrow[0,1)$. Fortunately, it is not hard to do. Such a function can be defined, for instance, by setting $f(x)=\frac{x}{2}$ for all $x \in[0,1]$. Injectivity of f is pretty evident (if $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $\frac{x_{1}}{2}=\frac{x_{2}}{2}$ and we conclude immediately that $x_{1}=x_{2}$).
Now, we would like to show that $|[0,1)| \leq|[0,1]|$. In order to do that, just notice that $[0,1) \subseteq[0,1]$. Now, the desired statement follows directly from theorem 8.15(a).
3. Use Theorem 8.15 and the Schröder-Bernstein Theorem to prove $(0,1) \sim \mathbb{R}$.

Proof. The strategy we are going to use will be the same as in the previous exercise. Namely, we will show that $|(0,1)| \leq|\mathbb{R}|$ and $|\mathbb{R}| \leq|(0,1)|$. The statement of the problem will follow then from the Schröder-Bernstein Theorem.
First, since the interval $(0,1)$ is a subset of \mathbb{R}, then the inequality $|(0,1)| \leq|\mathbb{R}|$ follows from theorem 8.15(a).
Now, we would like to show that $|\mathbb{R}| \leq|(0,1)|$. To do that, we will construct an injective function $f: \mathbb{R} \rightarrow(0,1)$. For instance, we can set $f(x)=\frac{1}{\pi} \arctan (x)+\frac{1}{2}$ for $x \in \mathbb{R}$. One can easily check that function f is injective - it follows from injectivity of arctangent.

