Quiz 1. Thursday September 13,2012
(1) Verify the tautology $[p \vee(q \vee r)] \Longleftrightarrow[(p \vee q) \vee r]$.

| $p$ | $q$ | $r$ | $p \vee q$ | $q \vee r$ | $p \vee(q \vee r)$ | $(p \vee q) \vee r$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T$ |
| $T$ | $T$ | $F$ | $T$ | $T$ | $T$ | $T$ |
| $T$ | $F$ | $T$ | $T$ | $T$ | $T$ | $T$ |
| $T$ | $F$ | $F$ | $T$ | $F$ | $T$ | $T$ |
| $F$ | $T$ | $T$ | $T$ | $T$ | $T$ | $T$ |
| $F$ | $T$ | $F$ | $T$ | $T$ | $T$ | $T$ |
| $F$ | $F$ | $T$ | $F$ | $T$ | $T$ | $T$ |
| $F$ |

The columns for $\quad p \vee(q \vee r)$ and $(p \vee q) \vee r$ are identical, meaning that these statements have the same truth value for all possible triples of truth values for $p, q$, and $r$. Thus, the two statements are logically equivalent.
(2) A function $f$ is strictly increasing $\Leftrightarrow$

$$
\forall x, y, \quad x<y \Rightarrow f(x)<f(y) \text {. }
$$

Negation: $\exists x, y \nexists \quad x<y \quad \wedge f(x) \geqslant f(y)$.

Remember that your work is graded on the quality of your writing and explanation as well as the validity of the mathematics.
(1) (7 Points) Use a truth table to verify the following tautology: $[p \vee(q \vee r)] \Leftrightarrow[(p \vee q) \vee r]$. Make sure to explain why your table proves the desired result.
To say this statement is a tautology is to say it is true for all possible values of True or False assigned to the "atomic" statements $p, q, r$. Thus, the unblemished column of "T"s in the table below verifies the tautology.

| $p$ | $q$ | $r$ | $(q \vee r)$ | $p \vee(q \vee r)$ | $(p \vee q)$ | $(p \vee q) \vee r$ | $[p \vee(q \vee r)] \Leftrightarrow[(p \vee q) \vee r]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T$ |  |
| $T$ | $T$ | $F$ | $T$ | $T$ | $T$ | $T$ | $T$ |
| $T$ | $F$ | $T$ | $T$ | $T$ | $T$ | $T$ |  |
| $F$ | $T$ | $T$ | $T$ | $T$ | $T$ | $T$ |  |
| $T$ | $F$ | $F$ | $F$ | $T$ | $T$ | $T$ |  |
| $F$ | $T$ | $F$ | $T$ | $T$ | $T$ | $T$ |  |
| $T$ | $F$ | $T$ | $T$ | $T$ | $F$ | $T$ | $T$ |
| $F$ | $T$ |
| $T$ |  |  |  |  |  |  |  |
| $T$ |  |  |  |  |  |  |  |

(2) (7 Points) Rewrite the following statement using logical symbols such as (but not limited to) $\forall, \exists$, $\ni$ and $\Rightarrow$ as appropriate. Then write the negation of the statement, to explain when a function is not strictly increasing, using the same symbolism.

A function $f$ is strictly increasing ff for every $x$ and for every $y$, if $x<y$, then $f(x)<f(y)$.
Symbolic version: $\forall x \forall y((x<y) \Rightarrow(f(x)<f(y)))$

$$
\begin{aligned}
\text { Negation (in steps) : } & \sim(\forall x \forall y((x<y) \Rightarrow(f(x)<f(y)))) \\
& \Leftrightarrow \quad \exists x \ni \sim(\forall y((x<y) \Rightarrow(f(x)<f(y)))) \\
& \Leftrightarrow \exists \exists \exists y \ni((x<y) \Rightarrow(f(x)<f(y))) \\
& \Leftrightarrow \exists x \exists y \ni((x<y) \wedge \sim(f(x)<f(y))) \\
& \Leftrightarrow \quad \exists x \exists y \ni(x<y) \wedge(f(x)>f(y))
\end{aligned}
$$

(two "such that"s are superfluous)

