Remember that your work is graded on the quality of your writing and explanation as well as the validity of the mathematics.
(1) (7 Points) Let A, B, and C be subsets of a universal set U. Prove or give a counterexample: $A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$.

We claim that this statement is true.

Proof: To show that $A \backslash(B \cup C) \subseteq(A \backslash B) \cap(A \backslash C)$, take some $x \in A \backslash(B \cup C)$. Then, by definition, $x \in A$ and $x \notin B \cup C . x \notin B \cup C$ is equivalent to $x \notin B$ and $x \notin C[\neg(x \in B \vee x \in C) \Longleftrightarrow$ $x \notin B \wedge x \notin C]$. So x lies in both $A \backslash B$ and $A \backslash C$; so $x \in(A \backslash B) \cap(A \backslash C)$, which shows that $A \backslash(B \cup C) \subseteq(A \backslash B) \cap(A \backslash C)$.

Conversely, suppose $x \in(A \backslash B) \cap(A \backslash C)$. Then x lies in both $A \backslash B$ and $A \backslash C$. So $x \in A, x \notin B$, and $x \notin C$. The latter two statements are equivalent to saying $x \notin B \cup C$. So $x \in A \backslash(B \cup C)$, which shows that $(A \backslash B) \cap(A \backslash C) \subseteq A \backslash(B \cup C)$. So the two sets are equal.
(2) (7 Points) Determine $\bigcap_{B \in \mathcal{B}} B$ for $\mathcal{B}=\left\{\left[1,1+\frac{1}{n}\right]: n \in \mathbb{N}\right\}$ and prove that your answer is correct.

We claim that $\bigcap_{B \in \mathcal{B}} B=\{1\}$.
Proof: Indeed, $\{1\} \subseteq \bigcap_{B \in \mathcal{B}} B$ since $1 \in B=\left[1,1+\frac{1}{n}\right]$ for every $B \in \mathcal{B}$. Now consider $x \in \bigcap_{B \in \mathcal{B}} B$. Then $x \in B$ for all $B \in \mathcal{B}$, which is the same saying that $1 \leq x \leq 1+\frac{1}{n}$ for every $n \in \mathbb{N}$. It cannot be the case that $1<x$: if it were, we could take $N \in \mathbb{N}$ such that $1+\frac{1}{N}<x$, which would contradict our assumption that $x \in B$ for every $B \in \mathcal{B}$. Thus $1 \geq x$. Combining this with our assumption that $1 \leq x$, we have that $x=1$. So $\bigcap_{B \in \mathcal{B}} B \subseteq\{1\}$, giving us that $\bigcap_{B \in \mathcal{B}} B=\{1\}$.

