Remember that your work is graded on the quality of your writing and explanation as well as the validity of the mathematics.

(1) (7 Points) Let A, B, and C be subsets of a universal set U. Prove or give a counterexample: $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C).$

We claim that this statement is true.

Proof: To show that $A \setminus (B \cup C) \subseteq (A \setminus B) \cap (A \setminus C)$, take some $x \in A \setminus (B \cup C)$. Then, by definition, $x \in A$ and $x \notin B \cup C$. $x \notin B \cup C$ is equivalent to $x \notin B$ and $x \notin C$ [$\neg (x \in B \lor x \in C) \iff x \notin B \land x \notin C$]. So x lies in both $A \setminus B$ and $A \setminus C$; so $x \in (A \setminus B) \cap (A \setminus C)$, which shows that $A \setminus (B \cup C) \subseteq (A \setminus B) \cap (A \setminus C)$.

Conversely, suppose $x \in (A \setminus B) \cap (A \setminus C)$. Then x lies in both $A \setminus B$ and $A \setminus C$. So $x \in A$, $x \notin B$, and $x \notin C$. The latter two statements are equivalent to saying $x \notin B \cup C$. So $x \in A \setminus (B \cup C)$, which shows that $(A \setminus B) \cap (A \setminus C) \subseteq A \setminus (B \cup C)$. So the two sets are equal.

(2) (7 Points) Determine $\bigcap_{B \in \mathcal{B}} B$ for $\mathcal{B} = \left\{ \left[1, 1 + \frac{1}{n} \right] : n \in \mathbb{N} \right\}$ and prove that your answer is correct.

We claim that $\bigcap_{B \in \mathcal{B}} B = \{1\}.$

Proof: Indeed, $\{1\} \subseteq \bigcap_{B \in \mathcal{B}} B$ since $1 \in B = [1, 1 + \frac{1}{n}]$ for every $B \in \mathcal{B}$. Now consider $x \in \bigcap_{B \in \mathcal{B}} B$. Then $x \in B$ for all $B \in \mathcal{B}$, which is the same saying that $1 \leq x \leq 1 + \frac{1}{n}$ for every $n \in \mathbb{N}$. It cannot be the case that 1 < x: if it were, we could take $N \in \mathbb{N}$ such that $1 + \frac{1}{N} < x$, which would contradict our assumption that $x \in B$ for every $B \in \mathcal{B}$. Thus $1 \geq x$. Combining this with our assumption that $1 \leq x$, we have that x = 1. So $\bigcap_{B \in \mathcal{B}} B \subseteq \{1\}$, giving us that $\bigcap_{B \in \mathcal{B}} B = \{1\}$.