Quiz 4

Use induction to prove: if $1+x>0$, then $(1+x)^{n} \geq 1+n x$ for all $n \in \mathbb{N}$.

Solution.

Step 1. For $n=1$, both sides of the given non-strict inequality are actually equal. That establishes the basis of induction.

Step 2. Now, suppose that the statement of the problem is true for a natural $n=k$. That is, we take for granted that for any $x>-1$, the inequality

$$
\begin{equation*}
(1+x)^{k} \geq 1+k x \tag{1}
\end{equation*}
$$

holds. We would like to show that it holds for $n=k+1$ as well.
Multiplying both sides of (1) by a positive number $1+x$, we obtain

$$
\begin{equation*}
(1+x)^{k+1} \geq(1+k x)(1+x) \tag{2}
\end{equation*}
$$

Since $k>0$, then

$$
(1+k x)(1+x)=1+(k+1) x+\underbrace{k x^{2}}_{\geq 0} \geq 1+(k+1) x .
$$

Returning to (2), we get

$$
(1+x)^{k+1} \geq 1+(k+1) x .
$$

This is precisely the desired inequality for $n=k+1$. Thus, we have proven the induction step.

