$\oint 1.1$ Logical Connectives
Math consists of statements, sentences which can be classified as true or false - although we might not know which!
Ex Which of these are statements?

$$
\begin{array}{ll}
p: 2+2=4 & \text { Yes }(T) \\
q: 3+3=10 & \text { Yes }(F)
\end{array}
$$

r : We're in Wisconsin Yes (F)
S : This is your favorite class
"Yes" assuming we can rank classes
$t: x^{2}-4 x+3=0 \quad$ Yes - truth value depends on x.
(underlying assumption is that x is a \#)
u : This sentence is false. Not a stent
v : It's cold outside. "Yes" - depending on def "s.
W: Truth is beauty. Probably not...

Last time: A statement is a sentence (perhaps comprised of math'l expressions) which is either true or false - and it doesn't matter if we have all the information needed to know which it is.

Ex The temp. here is exactly $72^{\circ} \mathrm{F}$
(Even if we doit know exact temp)
assumption $\rightarrow 2 x-7=3$
that x is
a \#
(Truth val. depends on value of x)
NOT: This sentence is false.
Can't be tine, can't be false canst have a truth value

Given stints p, q we can create new stats using logic operators. (term: sentential operators)
(1) Negation (\square, \sim)

Ip ("not p ") is
true when p is false,
false when p is tore.
We can represent this with a "truth table."

P	$\sim P$
F	F
F	T

(2) Conjunction $($ and, $\uparrow)$
$p \wedge$ of time only when p, o both tire

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

(3) Disjunction (or, v)
$p \vee q$ if p is T,
q is T or both
(at least one is T)
There is also XOR (V): exactly one is true
(4) Implications.
(if p, then $q, p \Rightarrow q$)
$p=$ antecedent (hypothesis)
$q=$ consequent (conclusion)

p	q	$p \Rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

Convention: $p \Rightarrow q$ false only when p is T, is F.
Ex Determine truth values.
(I) If $\frac{2 \text { is positive, then } \frac{4 \text { is even. }}{T} \text {. }}{T}$
(F) If $\frac{3 \text { is odd, }}{T}$ (then) pigs can fly
(1) If pigs can fly, then I'm a rock star.

We can combine these operations
$p:$ Jim is tall
q : Jim has red hair

$$
p \wedge q=p \text { and } q=\text { (Jimistall) and (Jim has red hair) }
$$

= Jim is tall and has red hair.
$\sim(p \wedge q)=$ not (Jim is tall and has red hair)
not \sim pdq, $\quad=$ (Jim is not tall) or (Jim does not
which would
be $(\sim p) \wedge q$
have red hair) added later, after the next slide

You try: construct truth table for $\neg(p \vee q)$

p	q	$p \vee q$	$\neg(p \vee q)$	$(\neg p)$	$(7 q)$	$(7 p) \wedge(7 q)$
T	T	T	F	F	F	F
T	F	T	F	F	T	F
F	T	T	F	T	F	F
F	F	F	T	T	T	T

We've shown one of the two DeMorgan's Laws:
$\neg(p \vee q)$ is logically equivalent to $(\neg p) \wedge(\neg q)$
$\neg\left(p \wedge_{q}\right)$ is logically equivalent to $(\neg p) \vee(\neg q)$

Ex Write the negations of these stints:
*大 (Either) $x=0$ or $y<5$.
(not $x=0)$ and (not $y<5)$

$$
x \neq 0 \text { and } y \geq 5
$$

n is prime and (n is) odd
n is not prime or n is even
n is composite or even

* For some, "either $A_{\text {or }} B^{\prime \prime}$ means "exclusive or," i.e "A or B but not both." But this isn't universal. Because XOR is rare for us, it's safest in 3283 W to ass ume "inclusive or" unless told otherwise.

More combinations...
Def the contrapositive of $p \Rightarrow q$ is $(\sim q) \Rightarrow(\sim p)$
The converse of $p \Rightarrow q$ is $q \Rightarrow p$
Ex If $x>1$, then $x^{2}>1 \quad T$
$C P:$ if $x^{2} \leq 1$, then $x \leq 1 \quad 丁$
C : if $x^{2}>1$, then $x>1 \quad F$
If its raining, the sidewalk is wet. t
Assume tweet $C P$: dry sidewalk \Rightarrow sunny
is dry, 7 raining C : wet sidewalk \Rightarrow raining
 is sunny)

KEY: CP logically equiv. to original implication. (Converse isn't.)

Finally, a word about biconditionals...

A biconditional can be true or false
(We'll talk about this on Monday $9 / 12$ and then continue to Section 1.2)

