Thm 2.3.20 Let $f: A \rightarrow B$ and $g: B \rightarrow C$
(a) f, g surjective \Rightarrow gof surjective
(b) f, g injective $\Rightarrow g$ of injective
(c) f, g bijective $\Rightarrow g$ of is bjective. by $(a),(b)$ on wa-need to show (a, b).

Ohm 2.3.20 Let $f: A \rightarrow B$ and $g: B \rightarrow C$
(b) f, g injective $\Rightarrow g$ of injective

PI (Sketch!
Def g of injective
means: if

$$
\begin{aligned}
& \text { moans: } \\
& g \circ(a)=g \circ f\left(a^{\prime}\right) \text {, then }
\end{aligned}
$$

Better: contrapositive: $a \neq a^{\prime} \Rightarrow \operatorname{gof}(a) \neq g \circ f\left(a^{\prime}\right)$. (Want to show)
Let $a \neq a^{\prime}$ in A. Then $f(a) \neq f\left(a^{\prime}\right)$, because f is injective.
Since g is also injective $g(f(a)) \neq g(f(a))$.

Functions Acting on Sets
Def Let $f: A \rightarrow B$ and suppose $C \leq A, D \leq B$. Then

$$
\begin{aligned}
f(c) & =\{b \in B: b=f(c) \text { for some } c \in C\} \text { "image of } C^{"} \\
& =\{b \in B: \exists c \in C \text { st. } f(c)=b\} \\
& =\{f(c): c \in C\} \\
f^{-1}(D) & =\{a: f(a) \in D\} \quad \text { "pre-image of } 0 \text { " }
\end{aligned}
$$

$E_{x} f(x)=\cos x$

$$
\begin{aligned}
& f([0, \pi))=(-1,1] \\
& f^{-1}(\{0\})=\left\{\frac{\pi}{2}+\pi k: k \in \mathbb{Z}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex } f(x)=x^{3}-x=x(x-1)(x+1) \\
& f((-\infty,-1])=(-\infty, 0] \\
& f((-1, \infty))=[f(a), \infty)=f((0, \infty)) \\
& f((1, \infty))=(0, \infty) \quad f^{-1}((0, \infty))=(-1,0) \cup(1, \infty)
\end{aligned}
$$

\exists many theorems involving all of the concepts:
Thu 2.3.16
(a) $C \leq f^{-1}[f(c)]$
(b) $f\left[f^{-1}(D)\right] \subseteq D$
(c) $f\left(c_{1} \cap c_{2}\right) \subseteq f\left(c_{1}\right) \cap f\left(c_{2}\right)$

The 2.3.18
(i) if f injective $f\left(c_{1} \cap c_{2}\right)=f\left(c_{1}\right) \cap f\left(c_{2}\right)$

1 Assignment: read through these thus and come to class on Tuesday with questions!

Last Concept in $\$ 2,3$
Def Let $f: A \rightarrow B$ be bijective. The inverse of f is the function $f^{-1}: B \rightarrow A$ which "undoes" f :

$$
f^{-1}(b)=a \text { where } f(a)=b
$$

Relation version: $(b, a) \in B \times A$ is in f^{-1} if $(a, b) \in f \leq A \times B$

$$
f^{-1}=\{(b, a):(a, b) \in f\} .
$$

$\$$ Notice the similarity in notation with pre-images. preimager generally written for sets: eg. $f^{-1}(D)$ $f^{-1}(\{x\})$

The 2.3.24 Let $f: A \rightarrow B$ be bijective. Then
(a) $f^{-1}: B \rightarrow A$ is also a bijection.
(b) $f^{-1} \circ f=i d_{A}$ and $f \circ f^{-1}=i d_{B}$ where id : $S \rightarrow S$ is identity function.

Ex $\begin{aligned} f: \mathbb{Z} & \rightarrow \mathbb{Z} \\ n \mapsto n+1 & f^{-1}: \mathbb{Z} \rightarrow \mathbb{Z} \\ m & \mapsto m-1\end{aligned}$

