$\oint 2.3$ functions
This section contains many def! including "function" as a relation, ie. a subset of a Cartesian Product.

Weill cover this section in depth. Not all defs/concepts are vital, but you will make your future mathematical lives easier if you put in the effort to learn:
\& 1. $f: A \rightarrow B$ notation, domain, codomain, range
\$* 2. injective, surjective, bijective
3. f_{n} inverses, preimages
4. Compositions (and interplay with \#1-3)

Algebra Through Calculus A function is a formula or rule which takes each input and transforms it to an output.
inputs: x, t, θ outputs $f(x), g(t), y=\sin (\theta)$
MV Calc/Linear Algletz. We often use a more general notation
$f: A \rightarrow B \quad A:$ set of inputs, domain
B: set of (possible) outputs, codomain target space

$$
\begin{aligned}
\text { range }(f)=\operatorname{rng}(f)=\text { set of actual output } & =\{f(a) \mid a \in A\} \\
& =\{b \in B \mid \exists a \exists f(a)=b\}
\end{aligned}
$$

In many books, range pot. outputs = codomaih, and image is actual outputs.
f must assign exact y one value in B to each lt in A.

Ex $f: \mathbb{R}^{2} \rightarrow \mathbb{R} \quad f(x, y)=x^{2}-y^{2}$
inputs are $(x, y) \in \mathbb{R}^{2}$
outputs are $x^{2}-y^{2} \in \mathbb{R}$.
Ex $f: \mathbb{Z} \rightarrow \mathbb{N}_{0}=\mathbb{N} \cup\{0\}=\{0,1,2,3, \ldots\}$
$m \mapsto m^{2}$

$$
\text { Range }=\text { actual outputs }=\{0,1,4,9, \ldots\}
$$

Could also write:

$$
\begin{aligned}
f: \mathbb{R} & \rightarrow \mathbb{Z} \\
m & \mapsto m^{2} \\
f: \mathbb{Z} & \mapsto 0,1,4,9, \ldots\} \\
m & \mapsto m^{2}
\end{aligned}
$$

Also: $\quad f: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$

$$
m \longmapsto m^{2}
$$

has same range.
4. This book is even more general - at least, at first...
(subset)
Def A function from A to B is a non-empty relation $f \subseteq A \times B$ s.t.
(1) $\forall a \in A, \exists b \in B \rightarrow(a, b) \in f$
(2) if (a, b) and $\left(a, b^{\prime}\right)$ are in $f, b=b^{\prime}$

Instead of giving a formula or rule, this method lists all inputs with their corresponding outputs:

$$
(a, b) \in f \text { means " } f(a)=b \text { " }
$$

(1) says every a in domain gets assigned a in value.
(2) says every a gets sent to only one fleas

Ex $\quad f: \underset{n \mapsto \mathbb{N}}{ } \quad \underset{N}{ } \quad$ e.g. $f(n)=n+1$
As subset of $\mathbb{N} \times \mathbb{N}, f=\{(1,2),(2,3),(4,5),(5,6), \ldots\}$
Ex $f: \mathbb{N} \rightarrow \mathbb{N}$

$$
f=\left\{(1,1),(2,4),(3,9),(4,(6), \ldots\}=\left\{\left(n, n^{2}\right) \mid n \in \mathbb{N}\right\}\right.
$$

Ex $f:$

$$
\begin{aligned}
\mathbb{R} & \rightarrow[-1,1] \\
x & \mapsto \cos (x) . \\
f & \neq\{(0,1),(0.1, \cos 0.1),(0.01, \cos .01), \ldots ., ? ?\} \\
& =\{(x, \cos x) \mid x \in \mathbb{R}] \subseteq \mathbb{R} \times[-1,1]
\end{aligned}
$$

You're used to graphing fins:

$$
(a, f(a)) \subseteq f
$$

We can also visualize them as generic "blobs." inputs

Ex $f: x \rightarrow Y$,
$X=$ set of all 3283 W students
$Y=$ \{Rogness, Albritton, Baker, Corsi, del Mas, Kelley\}
$f(x)=$ which instructor is hit by tomato thrown by student x.

Ex $f: x \rightarrow y$,
$X=$ set of all 3283 W students
$Y=$ \{Rogness, Albritton, Baker, Corsi, del Mas, Kelley\}
$f(x)=$ which instructor is hit by tomato thrown by student x.

$f(x)=$ person who grades your HQ's

Ex $f: x \rightarrow Y$,
$X=$ set of all 3283 W students
$Y=$ \{Rogness, Albritton, Baker, Corsi, del Mas, Kelley\}
$f(x)=$ which instructor is hit by tomato thrown by student x.

1II six ensue all outputs hits then each student after makes own choice.

Hugely important properties of fur $f: A \rightarrow B$
Def f is subjective (onto, is a surjection) if every potential outset in B is an actual output.

Function notation: $\forall b \in B \exists a \in A \geqslant f(a)=b$.
Relation version: $\quad \forall b \in B \exists a \in A \ni(a, b) \in f$

Hugely important properties of fur $f: A \rightarrow B$
Def f is injective ($1: 1$, one to ore, is an injection) if no two ellis in A are sent to same output in B

Function notation: If $f(a)=b$ and $f\left(a^{\prime}\right)=b$, then $a=a^{\prime}$. $\underline{O R}$ if $a \neq a^{\prime}$ then $f(a) \neq f\left(a^{\prime}\right)$. (contrapos.)
Relation version: If $(a, b) \in f$ and $\left(a^{\prime}, b\right) \in f$ then $a=a^{\prime}$.

Hugely important properties of fur $f: A \rightarrow B$
Def f is bijective (is a bijection, is a $1: 1$ correspondence) if it is both injective and sujective.

If \exists bijection A to B it means A, B "equivalent" (see §2.4). They're the same set, with efts relabeled.

Ex $f: \underset{x \longmapsto}{\mathbb{R}} \rightarrow \mathbb{R} \quad f(x)=x^{2} \quad x^{2}$
Not surjective - no neg. \#t's are outputs. $\forall x \in \mathbb{R}, f(x) \neq-1$.
Not injective - $f(-2)=f(2)=4$, but $-2 \neq 2$.

$$
\begin{aligned}
f: & \mathbb{R} \rightarrow[0, \infty) \\
x & \mapsto x^{2}
\end{aligned}
$$

Is surjective! Let $y \in[0, \infty)$. Then let

$$
x=\sqrt{y} \in \mathbb{R} \text {, and } f(x)=(x)^{2}=(\sqrt{y})^{2}=y \text {. }
$$

Not injective - same example.
Note we made function subjective by describing the codomain more accurately - didn't change formula or domain.

$$
\begin{aligned}
f:[0, \infty) & \longrightarrow[0, \infty) \text { or } \begin{aligned}
f:(-\infty, 0] & \longrightarrow[0, \infty) \\
x & \longmapsto x^{2}
\end{aligned} x^{2}
\end{aligned}
$$

injective (and still surf) but we've changed the fr. "restricted the domain"
"There are no noin-sujective fur. Just poorly defined ones."

