Chapter 3: The Real Numbers
$\oint 3.1 \mathbb{N}(?!)$ and induction.
\mathbb{N} provides a nice intro to properties of number systems and sets. For example:

Axiom 3.1. \mathbb{N} is well ordered, which means:
If $\phi \neq S \subseteq \mathbb{N}$, then it has "least" ell, ie. $\exists k \in S$ such that $k \leq m \forall m \in S$.

Ex $S=\{10,9,8,100,99,98,1000,999,998, \ldots\} \subseteq \mathbb{N}$ $k=8 \leq \mathrm{m} \quad \forall m \in S$.

Aside \#1 Could look at the rest of the elts in S (if there are any, choose the least of those, repeat.
\Rightarrow can write S in numerical order.

$$
S=\{8,9,10,98,99,100,998,999,100, \ldots\}
$$

Aside \#2 Can every set be well-ordered?
What's the smallest/minimal alt in $(0,1)$? or \mathbb{R} ?

Well Ordering "Theorem" Every set can be well-ordered (with respect to some order - not necessarily $<, \leq$, etc) Hmm... believable? Equivalent to:
Axiom of Choice Given any infinite collection of bins (set) we can choose one object (elf) from each.

Seems reasonable.... but has weird consequences, like WoT above, and...

Banach-Tarski Paradox
A sphere in \mathbb{R}^{3} can be cut into a finite number of pieces, which can be rearranged and glued back together...
into two identical copies of original sphere(!!?!)

I CARVED AND CARVED, AND THE NEXTTHING I KNEW I HAD TWO PUMPKINS.

 I TOWD YOUNOT TO TAKE THE AXIOM

Back to Reality
The 3.1.2 (Proof by Induction)
Let $P(n)$ be a stat which is T / F for each n. If base \longrightarrow
(a) $P(1)$ is true
induction step $\rightarrow(b) \forall k \in \mathbb{N}$, if $P(k)$ true then $P(k+1)$ tue Then $P(n)$ true for all $n \in \mathbb{N}$.
idea: $P(1) \Rightarrow P(2) \Rightarrow P(3) \Rightarrow P(4) \Rightarrow$ (infinite ladder) [could start other than $n=1$]
Pf: Let $S=\{k \mid P(k)$ is false $\} \subseteq \mathbb{N}$. If $S=\phi$, then $P(n)$ tue $\forall n$, were done. If $s \neq \phi$, it has a least et m [by well ordering]. By (a) [base case] $m \neq 1$, so $m-1 \in \mathbb{N}$. $P(m-1)$ true, so $(b) \Rightarrow P(m)$ true y.

Obligatory Historical Example
Prove: $1+2+3+\cdots+n=\frac{n(n+1)}{2}$
Check: $P(1): 1=\frac{1(1+1)}{2}=\frac{2}{2}=1$
$P(4): 1+2+3+4=10$.

$$
\frac{4(5)}{2}=10 .
$$

$P(1000): 1+2+3+4+\cdots+1000$

$$
\frac{1000+999+998+997 \cdots+1}{1001+1001+1001+\cdots \cdots+1001}=1000(1001)
$$

Answer: $\frac{1}{2}(1000 \cdot 1001)$

Inductive Proof $1+2+3+\cdots+n=\frac{n(n+1)}{2}: P(n)$
Base care: checked $P(1)$ above
Induction step: Assume $P(n)$ is true, $1+\cdots+n=\frac{n(n+1)}{2}$, and we want to show $P(n+1)$ is true:

$$
\begin{aligned}
1+2+3+\cdots+n+(n+1)= & {[1+2+3+\cdots+n]+(n+1) } \\
& \text { use assumption }
\end{aligned}
$$

* often use $P(h), P(k+1)$

$$
\begin{aligned}
& =\left[\frac{n(n+1)}{2}\right]+(n+1) \\
& =\frac{\left(n^{2}+n\right)+2 n+2}{2} \\
& =\frac{n^{2}+3 n+2}{2} \\
& =\frac{(n+1)(n+2)}{2} \text {, as desired. }
\end{aligned}
$$

1! What's wrong with this "inductive proof"?
Base case: $n=1: 1=\frac{1(2)}{2}$
Inductive Step: Assume true for n, prove for $n+1$:

$$
\begin{aligned}
& 1+2+3+\cdots+n=\frac{n(n+1)}{2} \\
& 1+2+3+\cdots+n+(n+1)=\frac{n(n+1)}{2}+(n+1) \\
& 1+2+3+\cdots+n+(n+1)=\frac{n^{2}+n+2 n+2}{2} \\
& 1+2+3+\cdots+n+(n+1)=\frac{n^{2}+3 n+2}{2} \\
& 1+2+3+\cdots+n+(n+1)=\frac{(n+1)(n+2)}{2}, \text { as desired. }
\end{aligned}
$$

! What's wrong with this "inductive proof"? ($\sqrt{2}$)
Base case: $n=1: 1=\frac{1(2)}{2}$
Inductive Step: Assume true for n, prove for $n+1$:

$$
\begin{aligned}
& 1+2+3+\cdots+n+(n+1)=\frac{(n+1)(n+2)}{2} \\
& 1+2+3+\cdots+n=\frac{(n+1)(n+2)}{2}-(n+1) \\
& 1+2+3+\cdots+n=\frac{\left(n^{2}+3 n+2\right)-2 n-2}{2} \\
& 1+2+3+\cdots+n=\frac{n^{2}+n}{2} \\
& 1+2+3+\cdots+n=\frac{n(n+1)}{2}, \begin{array}{l}
\text { which is true by } \\
\text { assumption. }
\end{array}
\end{aligned}
$$

General Guidelines:
(1) Don't work with both sides of an equality at once
(2) Related: don't say things are equal until you know they're equal.
avoid:

$$
\begin{aligned}
(\text { eon that }) & =\text { (we want) } \\
& =\sim \\
(\text { something }) & =\text { (we know) }
\end{aligned}
$$

