\oint The Completeness Axiom
Or: How does \mathbb{R} differ from Q ?
Major Concepts

1. Upper, lower bounds
2. sup, inf:

- def
- finding sup S, inf S
- proving your answers are correct.

3. Completeness
4. Density of \mathbb{Q}
5. Archimedean Property.

Begin with bounds: Some subsets of \mathbb{R} have minimum and/or maximum elements

- $m \in S$ is $\min S$ if $\forall s \in S, m \leq S$
- $M \in S$ is $\max S$ if $\forall s \in S, s \leq M$

Ex $S=\{0,2,4\}$

$$
S=[0, \infty)
$$

$$
S=(0,1)
$$

$$
S=\left\{\left.1-\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}
$$

 no min, max
 $\min S=0^{\circ}$ no max

More generally: m is an upper bound for $S \leq \mathbb{R}$ if $\forall s \in S, s \leq m$ m is a lower bound for $S \leq \mathbb{R}$ if $\forall s C S, m \leq S$ (need not be in S)

Ex $S=\{0,2,4\}$

$$
S=(0,1) \quad \begin{array}{ll}
0 & 0 \\
0
\end{array}
$$

O is lower bd.
is upper
S_{0} is $-1,-2,-3, \ldots$ bound. So
$-\sqrt{2},-1.7$
is 5 . or π...

$$
S=\left\{\left.1-\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}
$$

Observations (1) if m is upper bound for S, so is any \# larger than m.
(2) m is lower bound \Rightarrow so is any smaller $\#$.
(3) If an upper bd $m \in S$, then it's max S.

Def Let $\phi \neq S \subseteq \mathbb{R}$ be bounded above. (i.e. it has an upper bod) The least upper bound is called supremum of S,

$$
\sup S=\operatorname{lub} S
$$

Similarly, greatest lower bound of a set which is bod below is infinum of S,

$$
\inf S=g l b S .
$$

Ex $S=[0,1]$

So if $m=\sup S$,
(a) $m \geq s \forall s \in S$.
(b) $m^{\prime}<m$ can't be an upper bound: $\exists s^{\prime} \in S \neq s^{\prime}>m^{\prime}$

Similarly, if $m=$ infs
(a) $m \leq s \quad \forall s \in S$
(b) $m^{\prime}>m$ can't be lower bound: $\exists s^{\prime}<m^{\prime}$

Ex (Old Exam Problem) $A=\left\{\frac{n-1}{n+1}: n \in \mathbb{N}\right\}$
(a) List the ells of A.

$$
A=\left\{\frac{0}{2}, \frac{1}{3}, \frac{2}{4}, \frac{3}{5}, \frac{4}{6}, \frac{5}{7}, \frac{6}{8}, \cdots\right\}=\left\{0, \frac{1}{3}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{5}{7}, \frac{3}{4}, \cdots\right\}
$$

(b) Show A is bounded above and below
$n \in \mathbb{N} \Rightarrow n-1, n+1$ both $\geq 0 \Rightarrow \frac{n-1}{n+1} \geq 0$, so A is bounded below by 0 .
Also $n-1<n+1 \Rightarrow \frac{n-1}{n+1}<1 \quad(b / c n+1>0)$
(c) Find $l=\inf A, m=\sup A$. Prove your answers are right.

$$
l=\inf A=0, \quad m=\sup A=1
$$

$$
A=\left\{\frac{n-1}{n+1}: n \in \mathbb{N}\right\}=\{0,1 / 3,1 / 2,3 / 5,2 / 3,5 / 7, \ldots\}
$$

Proof that inf $A=0$
First, O is a lower bound of A by part (b).
Now suppose $\exists l>0$ which is a lower bound for A. This is a contradiction; ble $O \in A$, so l cannot a lower bound of A.

Key: shorter b/c $O \in A$, so $0=\min A$

$$
A=\left\{\frac{n-1}{n+1}: n \in \mathbb{N}\right\}=\{0,1 / 3,1 / 2,3 / 5,2 / 3,5 / 7, \ldots\}
$$

Proof that $\sup A=1$
By part (b), I is upper bound: $a \leq 1 \forall a \in A$.
Now suppose $\exists \mathrm{m}<1$ which is also an upper bd. Weill show this is impossible, so 1 is in fact the least upper bod
$\substack{n-1 \\ n+1} m$
$n-1>m m+m$
$n-n m>m+1$
$n(1-m)>m+1$
$n>\frac{m+1}{1-m}$$\quad$ find eft of A here, to right of

1) Sometimes $m=1-\varepsilon$ for some small

So solve $\frac{n-1}{n+1}>m=1-\varepsilon$

$$
\begin{aligned}
n-1 & >(n+1)(1-\varepsilon) \\
& \vdots \\
n & >\frac{\varepsilon+2}{\varepsilon}
\end{aligned}
$$

.... end result: $m=1-\varepsilon$ is not an upper bd. Hence I is least upper bound.

Completeness Axiom Every $\phi \neq S \subseteq \mathbb{R}$ which is bed above has a least upper bound.
Notes (1) \mathbb{Q} not complete. Ex $S:\left\{x \in \mathbb{Q}: x^{2}<2\right\}$
$0 \in S, \mid \in S \Rightarrow S \neq \phi$. bad above by $2(1.5,10$, et. $)$
BuT no least upper bo of $\operatorname{Sin} \mathbb{Q}: \sqrt{2} \notin \mathbb{Q}$
(2) Why not "Every $\phi \neq S \subseteq \mathbb{R}$ which is bad below has inf?"

True - can prove using completeness Axioms

Ohm 3.3.9 Archimedean Property of \mathbb{R}
\mathbb{N} has no upper bound in \mathbb{R}.

Pf By contradiction. Suppose N is bold above, $N \neq \phi \Rightarrow \exists$ least upper bd, $m=\sup \mathbb{N}$. Then $m-1$ not upper bd $\Rightarrow \exists n_{0} \in \mathbb{N}$, $n_{0}>m-1$. Then $n_{0}+1>m$, and $n_{0}+l \in \mathbb{N}$, m not upper bd y.
Tho 3.3.10 TFAE
(*) Archimedean Property
\& (a) $\forall z \in \mathbb{R}, \exists n \geqslant n>z$.
(b) $\forall x>0 \forall y \in \mathbb{R} \exists n \in \mathbb{N} \ni n x>y$
\& (c) $\forall x>0 \exists n \in \mathbb{N} \ni 0<\frac{1}{n}<x$.

