S4.1 Sequences and Convergence
Why study sequences?
They're a basic math'l object. Much of calculus can be described in terms of sequences: continuous fans, limits, (hence deriv's /integrals)
From a learning standpoint:
$\ell_{n \rightarrow \infty} a_{n}$ is "easier" than $\ell_{x \rightarrow a} f(x)$.
Informally, a seq. is a list of (real) numbers:

$$
1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots
$$

Formal Def A sequence in \mathbb{R} is a function $f: \mathbb{N} \rightarrow \mathbb{R}$ ($S_{0} f(i)$ is i 椞 \#in "list".)
Above: $f(n)=\frac{1}{n} ; f(1)=1, f(2)=\frac{1}{2}, f(3)=\frac{1}{8}, \cdots$
Usually, we avoid f_{n} notation and use subscripts:

$$
\begin{aligned}
a_{1} & =f(1), \quad a_{2}=f(2), a_{3}=f(3) \\
\text { Above }\left(a_{n}\right) & =(1 / n) \\
\left(a_{n}\right) & =(1,1 / 2,1 / 3,1 / 4, \ldots)
\end{aligned}
$$

$\$$

$$
\begin{aligned}
& \left(a_{n}\right)=\text { the sequence }\left(a_{1}, a_{2}, a_{3}, \ldots\right) \\
& \left\{a_{n}\right\}=\operatorname{set} \text { of \#'s in sequence. } \\
& \qquad \underline{E x} a_{n}=\sin (n \cdot T / 2)\left(a_{n}\right)=(1,0,-1,0,1,0,-1, \ldots) \\
& \left\{a_{n}\right\}=\{1,0,-1\} .
\end{aligned}
$$

(1!) many, many books use $\left\{a_{n}\right\}$ for what our book calls (an).

Ways to Define a Sequence
(1) Give a formula for $n^{\text {th }}$ term

$$
a_{n}=\frac{1}{n} \quad \text { OR } \quad\left(a_{n}\right)=\left(\frac{1}{n}\right)=\left(\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\right)
$$

(2) Give $1^{\text {st }}$ term (s) and a recursive formula.

$$
\begin{aligned}
& a_{1}=1, a_{n}=2 a_{n-1}+3 \text { gives }(1,5,13,29, \ldots . .) \\
& a_{1}=a_{2}=1 \quad a_{n}=a_{n-1}+a_{n-2} \quad(1,1,2,3,5,8,13,21, \ldots)
\end{aligned}
$$

(3) List enough terms to establish a pattern.

$$
\left.\left(a_{n}\right)=(1,4,9,16,25,36, \ldots) \text { (square \#'s, } a_{n}=n^{2}\right)
$$

1) Risky. What if somebody doesn't see patton? Or a different patten?

$$
\left(b_{n}\right)=(0,7,26, \ldots) \quad\left[b_{n}=n^{3}-1\right]
$$

(4) Graphically (Jat least two common ways)
\rightarrow Helpful, but not rigorous \leftarrow

