$\oint S .1$ (Precise Def of) Limits of Functions
Today: $\lim _{x \rightarrow a} f(x)$
Why didn't we start with this, instead of $\lim _{n \rightarrow \infty} s_{n}$?
(1) Teaching: sequence def" not as complicated
(2.) Textbook def" more complicated than needed.

You can use book as a reference, but anything you need to know for final will be covered here.

Wednesday: limit wrapup, prep for final exam.

From the beginning, "limits" and " $f(x)$ getting really, really close to $L^{\prime \prime}$ were derided.

Berkeley (18 th Century)
infinitesmals are the "ghosts of vanishing quantities."
Russell (20 th Century)
.. are "unnecessary, erroneous and self-contradictory"

Leibniz
Newton

Cauchy
Weierstrass

With sequences：

$$
\lim _{n \rightarrow \infty} S_{n}=L \text { if } \forall \varepsilon>0, \exists N \text { s.t. } n>N \text { forces }\left|S_{n}-L\right|<\varepsilon
$$

i．e．eventually，every井in seq．is $\underset{n>N}{\exists N} \underset{\forall \varepsilon>0}{\text {（arbitrarily）close to } L} \frac{\left|s_{n}-L\right|<\varepsilon}{}$

More generally, for $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\lim _{x \rightarrow a} f(x)=L \text { means }
$$

As x approaches $a, f(x) \frac{\text { gets closer and closer to } L}{|f(x)-L|<\varepsilon}$.
Precise Def: $\ell_{x \rightarrow a} f(x)=L$ means:

$$
\varliminf_{x \rightarrow a} f(x)=L \text { if: } \forall \varepsilon>0 \exists \delta \text { s.t. } 0<|x-a|<\delta \text { fores }|f(x)-L|<\varepsilon \text {. }
$$

1 As with sequences, ORDER IS IMPORTANT.
ε is chosen first. Then you have to find δ to make def" work.

As with limits of sequences, well use a "Think" step and a "Proof" step.

Ex Prove $f(x)=3 x-1$ is continuous at $x=2$.
Need to show: $\ell_{x \rightarrow 2} f(x)=f(2)$ i.e. $\sum_{x \rightarrow 2} 3 x-1=5$.
Think: Want to find δ sit $|x-2|<\delta \Rightarrow|3 x-1-5|<\varepsilon$.

Method I

$$
\begin{gathered}
|3 x-6|<\varepsilon \\
-\varepsilon<3 x-6<\varepsilon \\
-\varepsilon<3(x-2)<\varepsilon \\
-\varepsilon / 3<x-2<\varepsilon / 3 \\
|x-2|<\varepsilon / 3
\end{gathered}
$$

Method 2

$$
\begin{aligned}
& 3 x-6 \mid \\
|3(x-2)| & <\varepsilon \\
3 \cdot|x-2| & <\varepsilon \\
|x-2| & <\varepsilon / 3
\end{aligned}
$$

Ex Prove $f(x)=3 x-1$ is continuous at $x=2$.
Need to show: $\ell_{x \rightarrow 2} f(x)=f(2)$ i.e. $\sum_{x \rightarrow 2} 3 x-1=5$.
Proof:
Let $\varepsilon>0$ and choose $\delta=\varepsilon / 3$. Then $0<|x-2|<\delta \Rightarrow$

$$
|(3 x-1)-5|=|3 x-6|=3|x-2|<3(\varepsilon / 3)=\varepsilon
$$

$$
\forall \varepsilon>0 \exists \delta \text { s.t. } 0<|x-a|<\delta \Rightarrow|f(x)-L|<\varepsilon
$$

Ex Prove $\ell_{x \rightarrow 0} x^{4}=0$
T: Want to find δ s.t. oo $|x-0|<\delta$ fores $\left|x^{4}-0\right|<\varepsilon$.

$$
\left|x^{4}\right|=|x|^{4}=|x-0|^{4}<\varepsilon \quad \Leftrightarrow|x-0|<\varepsilon^{1 / 4}
$$

p : Let $\varepsilon>0$. Choose $\delta=\sqrt[4]{\varepsilon}=\varepsilon^{1 / 4}$. Then $|x-0|<\delta$,

$$
\left|x^{4}-0\right|=\left|x^{4}\right|=|x|^{4}=|x-0|^{4}<\left(\varepsilon^{1 / 4}\right)^{4}=\varepsilon
$$

$$
\forall \varepsilon>0 \exists \delta \text { s.t. } 0<|x-a|<\delta \Rightarrow|f(x)-L|<\varepsilon
$$

Ex Prove $\sum_{x \rightarrow 4} x^{2}-2 x-3=5$
Think: want $0<|x-4|<\delta$ to force $\left|\left(x^{2}-2 x-3\right)-5\right|<\varepsilon$.
We want $\left|x^{2}-2 x-8\right|=|(x+2)(x-4)|=|x+2| \cdot|x-4|<\varepsilon$.
(1) We can make $|x-4|$ small, but not $|x+2|$... or can we?! If $|x-4|$ really small, then $x \approx 4$ and $x+2 \approx 6$.

If I eventually make sure $\delta<1$, then

$$
\begin{aligned}
&|x-4|<\delta=1 \\
&-1<x-4<1 \\
& 3<x<5 \\
& 5<x+2<7 \\
&|x+2|<7
\end{aligned}
$$

So if $|x-4|<1, \quad\left|x^{2}-2 x-8\right|=|x+2| \cdot|x-4|<7 \cdot|x-4|<\varepsilon$
suggests $|x-4|<\varepsilon / 7=\delta$.
Proof: Let $\varepsilon>0$, and choose $\delta=\min \{1, \varepsilon / 7\}$. Thus if $0<|x-4|<\delta$, then not only is $|x-4|<\varepsilon / 7$, but also $|x-4|<1$

$$
\begin{gathered}
-1<x-4 \mid<1 \\
\vdots \\
|x+2|<7 .
\end{gathered}
$$

Furthermore,

$$
\left|\left(x^{2}-2 x-3\right)-5\right|=\left|x^{2}-2 x-8\right|=|x+2| \cdot|x-4|<7(\varepsilon / 7)=\varepsilon .
$$

Ex Prove $\ell_{x \rightarrow-2} x^{2}-1=3$.

$$
\left|\left(x^{2}-1\right)-3\right|=\left|x^{2}-4\right|=|x-2| \cdot|x+2| .
$$

We can make $|x+2|$ small; if $|x+2|<1$, then

$$
\begin{aligned}
-1 & <x+2<1 \\
-5 & <x-2<-3 \\
& |x-2|
\end{aligned}<5
$$

Then $|x-2| \cdot|x+2|<5|x+2|<\varepsilon$ suggest $\delta=\varepsilon / 5$.

Let $\varepsilon<0$.
Proof Let $\varepsilon>0$. Choose $\delta=\min \{l, \varepsilon / \delta\}$. Then $0<|x+2|<\delta$ means $|x+2|<\varepsilon / \delta$ and $|x+2|<1$; the latter fores

$$
\begin{aligned}
-1 & <x+2
\end{aligned}<1 \begin{aligned}
-5 & <x-2
\end{aligned}<-38 \text { |x-2| }<5
$$

Thus:

$$
\left|\left(x^{2}-1\right)-3\right|=\left|x^{2}-4\right|=|x-2| \cdot|x+2|<5(\varepsilon / 5)=\varepsilon .
$$

Final Exam
A \exists three past finals (with solutions) that will be posted online
Review guide posted today/tomosow.

