§8.1 Infinite Sums
Adding up infinitely many \#'s is tricky. To wit:

$$
\begin{aligned}
0 & =0+0+0+0+0+\cdots \\
& =(1-1)+(1-1)+(1-1)+(1-1)+(1-1)+\cdots \\
& =1+(-1+1)+(-1+1)+(-1+1)+(-1+1)+\cdots \\
& =1+0+0+0+0+\cdots \\
& =1+0 \\
& =1
\end{aligned}
$$

Recall, given $\left(a_{n}\right), \sum_{n=1}^{\infty} a_{n}=\left.a_{1}\right|_{s_{1}}+a_{2}\left|+a_{3}\right|+a_{4} \mid+\cdots$
A sum of the terms in a sequence is a series; above we have an infinite series

When can we say an infinite series has a value? (ie. equals a real \#.)
Ea has an associated seq of partial (truncated) sums

$$
\begin{aligned}
& S_{1}=a_{1} \\
& S_{2}=a_{1}+a_{2} \\
& \vdots \\
& S_{n}=a_{1}+a_{2}+\cdots+a_{n}=\sum_{k=1}^{n} a_{k}={ }^{\prime \prime} n^{\text {th }} \text { partial sum of } \sum_{n}{ }^{\prime \prime} "
\end{aligned}
$$

If (and only if) $s_{n} \rightarrow S$ may we say

$$
\sum_{n=1}^{n} a_{n}=a_{1}+a_{2}+a_{3}+\cdots=s \in \mathbb{R}
$$

Otherwise the series diverges and does not equal a \#.
! Warnings
(1) $a_{1}+a_{2}+a_{3}+\cdots$ has no arithmetical value unless $\sum a_{n}$ converges. So $a_{1}+a_{2}+a_{3}+\cdots$ means $\frac{\lim \underbrace{\left(a_{1}+a_{2}+\cdots+a_{n}\right)}_{\lim S_{n}}}{\lim }$
(2) Think of $a_{1}+a_{2}+a_{3}+\cdots$ as one object. Don't apply laws of arithmetic to infinite sums. Don't rearrange, regroup, etc.

