\$8.3 Power Series

So far our series have been infinite sum of preselected numbers. Given (an)= (a, a, a, a,...) we analyze

2 an = a1 + a2 + az + ay + ...

In this section, our series are functions which depend on a variable. Two issues:

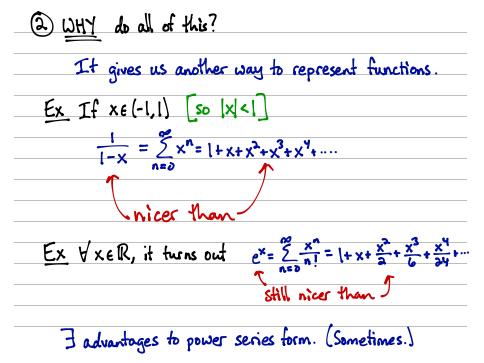
I. When does make sense?

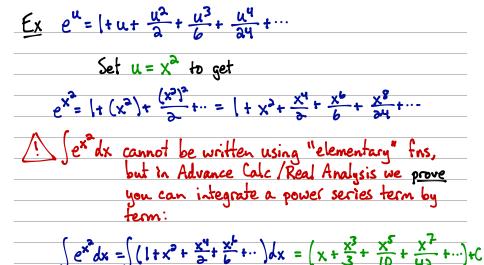
2. Why would we care?

Def let an be a sequence. Then
$$\sum_{n=0}^{\infty} a_n x^n = a_0 x^0 + a_1 x + a_2 x^2 + \cdots$$

is a power series. An is coeff
of x^n . (the n^{th} coeff)
Notes (D) For a specific x , we get a regular dd series
 $\sum_{n=0}^{\infty} \frac{1}{n+1} x^n = \left[+ \frac{1}{2} x + \frac{1}{3} x^2 + \frac{1}{4} x^3 + \cdots \right]$
 $x=1$ $\sum_{n=0}^{\infty} \frac{1}{n+1} = \left[+ \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{3} + \cdots \right]$
 $x=1$ $\sum_{n=0}^{\infty} \frac{1}{n+1} = \left[+ \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{3} + \cdots \right]$
 $x=1$ $\sum_{n=0}^{\infty} \frac{1}{n+1} = \left[+ \frac{1}{2} + \frac{1}{3} + \frac{1}{32} + \cdots \right]$
Cowerges by \ldots comparison test? $n+1$ $(\frac{1}{2})^n \leq (\frac{1}{2})^n$

Main goal of this section: simultaneously find all values of x for which Eanxⁿ converges.

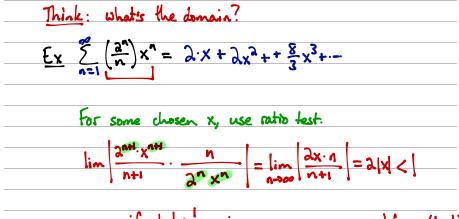




y=ex 3 Another way power series arise is through <u>Taylor Polynomials</u>. ex is hasd to compute, but polynomials are "easy", esp. for a computer ... Can we find poly's of degree n, pn(x)≈e^x near x=0? (Match fn value and as many derivatives as possible.] $P_{0}(0) = | = e^{\circ} \sqrt{2}$ $P_{n}(x) = 1$ $P_{1}(0) = |+0| = |= e^{\circ} \sqrt{2}$ $p_1(x) = 1+x$ p'(0) = | = 1st deriv of ex@x=0v

 $p_a(x) = 1 + x + \frac{x^a}{a}$

Main Goal For what values of x does Zanxh converge?



We need to check cases where limit is I by hand. 1.e. 2|x|=1, x=1/2 or x=-1/2 $x=\frac{1}{2}: \sum \left(\frac{2^n}{n}\right) \left(\frac{1}{2}\right)^n = \sum \frac{1}{n} = +\infty$ divergens x=-1/2 $\sum_{n=1}^{\infty} (-\frac{1}{2})^n = \sum_{n=1}^{\infty} ($ Thus series converges iff x E [-1/2, 1/2]. interval of convince is radius of convince is r= 1/2