$\oint 8.3$ Power Series
So far our series have been infinite sum of preselected numbers. Given $\left(a_{n}\right)=\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ we analyze

$$
\sum a_{n}=a_{1}+a_{2}+a_{3}+a_{4}+\cdots
$$

In this section, our series are functions which depend on a variable. Two issues:

1. When does make sense?
2. why would we care?

Def Let a_{n} be a sequence. Then $\sum_{n=0}^{0} a_{n} x^{n}=a_{0} x^{0}+a_{1} x+a_{2} x^{2}+\cdots$ is a power series. a_{n} is coff of x^{n}. (the $n^{\text {th }}$ coeff)

Notes (1) For a specific x, we get a regular dd series

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{1}{n+1} x^{n}=1+\frac{1}{2} x+\frac{1}{3} x^{2}+\frac{1}{4} x^{3}+\cdots \\
& x=1 \quad \sum_{n=0}^{\infty} \frac{1}{n+1}=1+\frac{1}{2}+\frac{1}{3}+\cdots=+\infty \\
& x=\frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n+1}\left(\frac{1}{2}\right)^{n}=1+\frac{1}{4}+\frac{1}{12}+\frac{1}{32}+\cdots
\end{aligned}
$$

Converges by .. comparison test? $\frac{1}{n+1}\left(\frac{1}{2}\right)^{n} \leq\left(\frac{l}{2}\right)^{n}$
Main goal of this section: simultaneously find all values of x for which $\sum a_{n} x^{n}$ converges.
(2) WHy do all of this?

If gives us another way to represent functions.
Ex If $x \in(-1,1) \quad[$ so $|x|<1]$

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+x^{4}+\cdots
$$

Ex $\forall x \in \mathbb{R}$, it turns out $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\cdots$ \uparrow still nicer than γ
\exists advantages to power series form. (Sometimes.)

Ex $e^{u}=1+u+\frac{u^{2}}{2}+\frac{u^{3}}{6}+\frac{u^{4}}{24}+\cdots$
Set $u=x^{2}$ to get

$$
e^{x^{2}}=1+\left(x^{2}\right)+\frac{\left(x^{2}\right)^{2}}{2}+\cdots=1+x^{2}+\frac{x^{4}}{2}+\frac{x^{6}}{6}+\frac{x^{8}}{24}+\cdots
$$

\} \int e ^ { x ^ { 2 } } d x cannot be written using "elementary" fins, but in Advance Calc/Real Analysis we prove you can integrate a power series term by term:

$$
\int e^{x^{2}} d x=\int\left(1+x^{2}+\frac{x^{4}}{2}+\frac{x^{5}}{6}+\cdots\right) d x=\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{10}+\frac{x^{7}}{42}+\cdots\right)+C
$$

(3) Another way power series arise is through
Taylor Polynomials.
e^{x} is hard to compute, but polynomials are "easy".
 esp. for a computer...

Can we find poly's of degree $n, p_{n}(x) \approx e^{x}$ near $x=0$? (Match f_{n} value and as many derivatives as possible.)

$$
\begin{array}{ll}
p_{0}(x)=1 & p_{0}(0)=1=e^{0} \checkmark \\
p_{1}(x)=1+x & p_{1}(0)=1+0=1=e^{0} \checkmark \\
& p_{1}^{\prime}(0)=1=1-\frac{s t}{} \text { deriv } \\
& \text { of } e^{x} @ x=0
\end{array}
$$

$$
p_{2}(x)=1+x+\frac{x^{2}}{2}
$$

Main Goal For what values of x does $\sum a_{n} x^{n}$ converge?
Think: what's the domain?
Ex $\sum_{n=1}^{\infty} \underbrace{\left(\frac{2^{n}}{n}\right) x^{n}}=2 \cdot x+2 x^{2}++\frac{8}{3} x^{3}+\cdots$
For some chosen x, use ratio test.

$$
\lim \left|\frac{2^{n+1} \cdot x^{n+1}}{n+1} \cdot \frac{n}{2^{n} x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{2 x \cdot n}{n+1}\right|=2|x|<1
$$

if $|x|<\frac{1}{2}$, i.e. series converges $\forall x \in\left(\frac{1}{2}, \frac{1}{2}\right)$ and if $|x|>1 / 2$, then him is >1 and series dives.

We need to check cases where limit is I by hand. i.e. $2|x|=1, x=1 / 2$ or $x=-1 / 2$
$x=\frac{1}{2}: \sum\left(\frac{2^{n}}{n}\right)\left(\frac{1}{2}\right)^{n}=\sum \frac{1}{n}=+\infty$ divergens
$x=-1 / 2 \quad \sum\left(\frac{2^{n}}{n}\right)\left(-\frac{1}{2}\right)^{n}=\sum(-1)^{n} \cdot \frac{1}{n}$ converges (alt. harm. series)

Thus series converges if $x \in[-1 / 2,1 / 2]$.
interval of convince is
radius of convince is $r=1 / 2$

