Name:

Remember that your work is graded on the quality of your writing and explanation as well as the validity of the mathematics. (5 Points)

(1) (9 Points) Prove: if x is rational and y is irrational, then x + y is irrational.

Ef: Proof by contradiction. Assume not,
so x is rottonal, y is isrrational, and x+y is rational. ⁺d Correct negation of implication
Then
$$x = \frac{a}{b}$$
 and $x+y=\frac{c}{d}$ for integers a,b,c,d with $b\neq 0$ and $d\neq 0$.⁺d⁻
Hence $y=(x+y)-x=\frac{c}{d}-\frac{a}{b}=\frac{bc-ad}{bd}$.⁺ The numerator and denominator
are integers, and $bd\neq 0$ because band d ore nonzero. Thus y is rational, which
contradicts our assumption.

(Therefore the assumption was wrong and the original statement is true.)

(2) (6 Points) Let A, B, and C be subsets of a universal set U. Prove $A \setminus (B \cup C) \subseteq (A \setminus B) \cap (A \setminus C)$.

<u>Pf</u>: Let $x \in A \setminus (B \cup C)$. This means $x \in A$ and $x \notin B \cup C$. In other words, $x \in A$ and x is in neither B nor C.⁺¹

Since xeA and $x \notin B$, we have $x \in A \setminus B$. Similarly, because $x \in A$ and $x \notin C$, x is in $A \setminus C_i^{\dagger}$ because x is in both sets, we know $x \in (A \setminus B) \cap (A \setminus C_i)^{\dagger}$

Thus any element of Ar(BUC) is in (ArB)n(ArC), which means

$$A^{(BUC)} \subseteq (A^{B}) \cap (A^{C}).$$