Remember that your work is graded on the quality of your writing and explanation as well as the validity of the mathematics. (5 Points)
(1) (9 Points) Prove: if x is rational and y is irrational, then $x+y$ is irrational.

Pf: Proof by contradiction. Assume not, so x is rational, y is irrational, and $x+y$ is rational. 2 Correct negation of implication

Then $x=\frac{a}{b}$ and $x+y=\frac{c}{d}$ for integers a, b, c, d with $b \neq 0$ and $d \neq 0 .^{+2}$ Hence $y=(x+y)-x=\frac{c}{d}-\frac{a}{b}=\frac{b c-a d}{b d}$.2 The numerator and denominator are integers, and bd $\neq 0$ because band d ore nonzero. Thus y is rational, which contradicts our assumption.

Therefore the assumption was wrong and the original statement is true.)
(2) (6 Points) Let A, B, and C be subsets of a universal set U. Prove $A \backslash(B \cup C) \subseteq(A \backslash B) \cap(A \backslash C)$.

Pf: Let $x \in A \backslash(B \cup C)^{+1}$. This means $x \in A$ and $x \notin B \cup C^{+1}$. In other words, $x \in A$ and x is in neither B nor C^{+1}

Since $x \in A$ and $x \notin B$, we have $x \in A \backslash B$. Similarly, because $x \in A$ and $x \notin C$, x is in $A \backslash C_{;}^{+1}$ because x is in both sets, we know

$$
x \in(A \backslash B) \cap(A \backslash C)^{+1} .
$$

Thus any element of $A \backslash(B \cup C)$ is in $(A \backslash B) \cap(A C C)$, which means

$$
A \cup(B \cup C) \subseteq(A \vee B) \cap(A \backslash C) .
$$

