The following is a partial list of solutions to homework problems, to help you double check answers as you prepare for the test. In some cases I might just give an answer; in others I might just give a few words of explanation. Sometimes you'll get both!

Please let me know if you spot a typo here!

1.11: There are 3^{5} total functions from $\{1,2,3\}$ to $\{1,2,3,4,5\}$, because to define a function you need to determine $f(1), f(2)$, and $f(3)$, and there are five choices of outputs for each function value. If f is injective, then each output has to be differerent, so there are $5 \cdot 4 \cdot 3=80$ possibilities. Note that there are no surjective functions, because with only three inputs, f can't possibly hit all five outputs.
1.31: $\sum_{i=4}^{i=10}\binom{10}{i}\left(\frac{3}{10}\right)^{i}\left(\frac{7}{10}\right)^{10-i}=0.350 \ldots$. This is also $1-\sum_{i=0}^{i=3}\binom{10}{i}\left(\frac{3}{10}\right)^{i}\left(\frac{7}{10}\right)^{10-i}$, where you subtract the probability of $0,1,2$, or 3 red balls from 1 .
1.42: Following my hint, you can construct the following system of equations

$$
\begin{aligned}
E & =E_{T} \\
E_{T} & =p\left(1+E_{H}\right)+q\left(1+E_{T}\right)=1+p E_{H}+q E_{T} \\
E_{H} & =p(1)+q\left(1+E_{T}\right)=1+q E_{T}
\end{aligned}
$$

Solving this system leads to $E=\frac{1+p}{p^{2}}$, and with $p=\frac{1}{2}, E=6$.
1.43: With $p=.11$ in the formula from $1.42, E=91.7355 \ldots$.
2.02: 2.32393.
2.05: The hardest part of this problem is figuring out the probabilities that the sum is $3,4, \ldots, 18$. That's harder than any of the counting problems on the test, so I'll just tell you that the probabilities are

$$
\begin{array}{r}
1 / 216,1 / 72,1 / 36,5 / 108,5 / 72,7 / 72,25 / 216,1 / 8 \\
1 / 8,25 / 216,7 / 72,5 / 72,5 / 108,1 / 36,1 / 72,1 / 216
\end{array}
$$

Given that distribution, the entropy is about 3.6.
2.A: The main part here is that $P(X=x)=1$ for some x, and the probability that X equals anything else is zero.
3.02: Follow the hint for 3.01 in the back of the book.
3.05: Including trees is not so easy, but you can check your process with me. I got the following code. If you have something different, it might still be correct, because you have to make ambiguous choices along the way. There are 6 things to be encoded; I'll call them

A, B, C, D, E, and F.

$$
\begin{aligned}
& f(A)=00 \\
& f(B)=01 \\
& f(C)=10 \\
& f(D)=110 \\
& f(E)=1110 \\
& f(F)=1111
\end{aligned}
$$

As I recall, the average word length is 2.375 , and the entropy is about 2.32 . The entropy has to be less than or equal to word length by the Noiseless Coding Theorem, so that turns out as expected.
3.06: Similar to 3.05
3.A: There doesn't, because of the Kraft-McMillan Inequalities. If $|\Sigma|=3$ then it's possible.
3.B: The first and third are instantaneous. The second is not, because any codeword is not only the prefix of some other codeword - it's the prefix of every following codeword on the list!
4.04: The probability of at least one error in the transmission of four digits is the same as

$$
\begin{aligned}
1-P(\text { no errors }) & =1-\left(\frac{3}{4}\right)^{4} \\
& =1-\frac{81}{256} \\
& =0.683594 \ldots
\end{aligned}
$$

The parity bit will detect a 1- or 3-bit error, so the probability of an undetected error is the probability of a 2 - or 4 -bit error.

$$
\begin{aligned}
P(2 \text { errors })+P(2 \text { errors }) & =\binom{4}{2}\left(\frac{1}{4}\right)^{2}\left(\frac{3}{4}\right)^{2}+\binom{4}{4}\left(\frac{1}{4}\right)^{4}\left(\frac{3}{4}\right)^{0} \\
& =6 \cdot \frac{1}{16} \frac{9}{16}+1 \cdot \frac{1}{256} \cdot 1 \quad=\frac{55}{256}=0.214844 \ldots
\end{aligned}
$$

4.06: On an intuitive level, any channel with $p>1 / 2$ is so unreliable we shouldn't use it. However, on a more abstract level, it's ok to use such a channel, but we don't learn anything new that we don't get from considering channels with $p<1 / 2$. For example, if $p=.001$, I can be 99.7% sure that if I receive 000 it was sent as 000 . If $p=.999$, on the other hand, I can be 99.7% sure that if I receive 000 , it started off as 111 - every bit was most likely flipped! The key is that the behavior is predictable, so I can account for it. High values of p are just as predictable as low values, but the bits get flipped instead of being left alone.
4.11: The rate is $R=\frac{\log _{2} 16}{12}=\frac{1}{3}$
4.A: This channel is useless, because we're essentially told that the probability of receiving 0 is p (and the probabiliy of receiving 1 is $1-p$), regardless of what's being sent!

