
Summary of Noisy Coding Rogness

Chapter 4 has a lot of definitions and formulas, and it’s easy to lose track of how they’re all
related to each other. This handout is an attempt to show you the big picture; it also helps you
figure out what I think is most important about the chapter before our exam next week. After a
summary of noisy coding, I added a section about the notation and language in this chapter, which
has been confusing for some people.

The Big Picture

Whenever we transmit information using cables, radio waves, or any other method, errors occur.
There are plenty of everyday examples: static on a telephone line or a cell phone, a fuzzy television
picture, or bad reception on a radio. The basic question is this: given a transmission channel with
a known error rate, is it possible to encode our information in such a way that we can recover from
the errors which will inevitably occur?

For the rest of this summary, we’ll assume all of our codes are binary. In an effort to avoid
confusion, “bit” will always mean the unit of information (see below), and I’ll refer to the 0’s and
1’s in codewords as “digits.”

Error Detection and Correction. By “recover from the errors” above I really mean, “Can we
detect or even correct the errors?” We detect errors by adding redundancy – parity digits, CRCs,
etc. – which let us know when certain errors have occurred. Then we can toss out the bad word
and ask for it to be resent. If we add even more redundancy we can automatically correct errors
as we move along.

Why wouldn’t we always just implement an error-correcting scheme and avoid the hassle of
having words retransmitted? The truth is that error correction can require a lot more redundancy
than error detection; to reliably detect errors might require adding a few digits (0’s or 1’s) per
codeword, whereas a good error correction scheme might nearly double the size of your codewords.
If you’re fairly confident that the channel has a low error rate, it might be more efficient in the
long run to use shorter words which offer some error-detection, and just accept the fact that some
words will be resent.

It’s worth mentioning that no error detection or correction scheme is perfect. If so many errors
occur during transmission that a codeword is transformed into another valid codeword, this will
never be detected. Similarly, if enough errors occur a received word could be “corrected” to the
wrong word. The point is to know enough to minimize this possibility.

Information. Recall that our basic unit of information is a “bit.” We first defined it in terms of
heads or tails with a fair coin, but it’s just as easy to use 0 and 1 instead of H and T. In class I’ve
often used “Yes” and “No” instead of 0 and 1. So you can think of it this way: a bit is exactly
enough information to answer a Yes/No question where each answer is equally likely.

Rate of a Code. A binary code has codewords which are strings of 0’s and 1’s. We defined the
rate of a code as1

Rate of f =
log2(# of codewords)

length of longest codeword

1Remember, the codewords often all have the same length, but this isn’t always true, as we saw with Huffman

codes.
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The rate gives us a way to tell how efficiently information is encoded by f . The unit here is “bits
per digit in the codewords.” Let’s think about two examples from class to make this clearer.

(1) Suppose we want to send an answer to a Yes/No question, but we’re worried that the 0 or
1 might be corrupted by the transmission channel. So we create a repetition code with two
words, 00000 and 11111. (If something else is received, the decoder will will a “majority
vote” algorithm.) You can double check that the rate of this code is 0.2. That makes perfect
sense, because we’re using five digits to encode one bit of information, so each digit in a
codeword has 1/5 of a bit of information.

Equivalently, if each digit in the codeword has 0.2 bits of information, 5 digits gives
5 · 0.2 = 1 bit of information, i.e. the answer “Yes” or “No.”

(2) Now suppose I want to sent the answer to a multiple choice question with 4 answers. I create
a code with the four words {00, 01, 10, 11}. You can check that the rate of this code is 1.
This means each digit in a codeword represents a full bit of information. Equivalently, each
two-digit word encodes two bits of information. That’s exactly the amount of information
I need to specify the four different answers.2

Note that this code has no redundancy whatsoever! I need at least two digits to specify
four possibilities, and I’m not using any more than two digits. Any errors would be unde-
tectable; if 10 is received as 01, that’s still a valid codeword! So codes with rate 1 are a
poor choice unless I’m using a transmission channel with no errors at all. (That’s Noiseless
Coding, in the previous chapter.)

Channel Capacity and the Noisy Coding Theorem. Now that we know what the rate of a
code is, we have to find a way to relate it to a given transmission channel. Roughly speaking, the
capacity of a channel is the amount of information–measured in bits per digit–which can reliably
be transmitted across a channel. This is not the definition of capacity, but rather an
interpretation of capacity made possibly by the Noisy Coding Theorem. The actual
definition was using intuitive notions of entropy and information, although in the important case
of a Binary Symmetric Channel with error probability p, we have the handy formula:

capacity = 1 + p log2 p + (1− p) log2(1− p)

The basic rule of noisy coding is that you should always use a code whose rate is less than the
capacity of the transmission channel. If you have a noisy channel with capacity 0.23, you can only
hope to reliably transmit 0.23 bits of information per digit. If you try to use a code with a rate of,
say, 0.4 bits per digit, then your decoded text will inevitably be full of errors. On the other hand,
our repetition code from above, with a rate of 0.2 bits per digit, could be appropriate here. Errors
will occur during transmission, but the decoder should still be able to recover the correct word.
(“Should” could be made more precise using probability....)

For a given Binary Symmetric Channel (with p < 1
2), the Noisy Coding Theorem tells us that we

can find codes with rates which (1) are arbitrarily close to the capacity and (2) have a probability
of error in decoding which is virtually zero. (In other words, it’s almost certain that the message
which is sent is received as intended, and it’s done with as efficient of a rate as we could hope for
given that channel.) These statements are all made more precise in the book; I’m only worried
about the big ideas here. Unfortunately, the Theorem doesn’t tell us how to make these codes, so
that’s what everybody in the field is trying to figure out.

2Each bit represents two possibilities, so two bits result in 22 = 4 possibilities.
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It’s also worth mentioning the converse of the Noisy Coding Theorem, which doesn’t appear in
your textbook. This says that if the rate of the code is higher than the capacity, you can’t hope
to reliably transmit your information across the channel; the probability of errors will be too high
and your message will be decoded to gobbledygook. (This is what allows for the “interpretation”
of capacity mentioned above.)

Slippery Notation

One of the things that makes this chapter tricky is that the meaning of certain notations change.
We’ve talked in class about the phrase “Abuse of Language.” This means we’re saying (or writing)
something which doesn’t quite fit our definitions, but we think it’s pretty clear what it means.
Here’s a standard example using one of the simplest functions from calculus:

f : R → R

x 7→ x2

Then the function is f , and the notation f(x) really means “the image of x under the function f .”
Yet we always talk about “the function f(x).” Technically this is incorrect, and yet it makes a lot
of sense to us.

In this chapter there are lots of things which don’t quite fit with earlier definitions, but “hope-
fully” make sense. (Well, everything makes sense once you understand it....) Here are a few things
that come to mind. Hopefully in the end you’ll agree that it’s easier to use these abuses of language
than to redefine all of the terms.

• Earlier we defined a random variable X to be a real -valued function from a sample space,
i.e. X : Ω → R. In the coding chapters the random variables often output letters or words
instead of real numbers. We could get around this by letting (for example) X take on values
1, 2, . . . , 26 instead of a, b, . . . , z, but it seems easier to think of the letters instead.

• A memoryless source X is a sequence of randon variables X1, X2, . . ., each of which emits
the same words with given probabilities: P (Xi emits w1) = p1, and so on. Intuitively, X

just keeps emitting words from the same set of source words, so we often drop the subscripts
and talk about P (X emits w1), even if this isn’t quite correct.

• A channel has an input character and an output character, but usually we’re interested in
sending more than just a single character. (For example, if the inputs and outputs are all
0’s and 1’s, we might be sending dozens, if not hundreds or thousands, of characters across
our channel.) Technically that means we’re talking about an extension of the channel (see
page 69), but we hardly ever explicitly mention the extension.

• Sources sometimes show up in different contexts. In the picture on page 62, X is a source
emitting codewords. These words are then encoded into 0’s and 1’s and sent across a
channel. In most of the rest of the chapter, however, those two steps are combined, and X

is a source emitting 0’s and 1’s. Whatever coding (Huffman? Repetition?) is used was done
before X came along. Y , on the other hand, generally refers to the words received at the
other end of the transmission channel. These may or may not be valid codewords; if not,
we’ll either attempt to detect errors and ask for a retransmission, or try to automatically
correct the received words so that they are valid codewords.

Jonathan Rogness <rogness@math.umn.edu> October 11, 2006
3

mailto:rogness@math.umn.edu

	The Big Picture
	Error Detection and Correction
	Information
	Rate of a Code
	Channel Capacity and the Noisy Coding Theorem

	Slippery Notation

