
Math 5335: Geometry Homework 3 Solutions

The following is a non-comprehensive list of solutions to homework problems. In some cases I may

give an answer with just a few words of explanation. On other problems the stated solution may be

complete. As always, feel free to ask if you are unsure of the appropriate level of details to include

in your own work.

Please let me know if you spot any typos and I’ll update things as soon as possible.

3.7.3: The barycentric coordinates give us the coefficients for a linear combination of the

three points A = (3,−2), B = (4,−2), and C = (4,−6):

(1, 1,−2)4 = 1 · (3,−2) + 2 · (4,−2)− 2 · (4,−6) = (3 + 8− 8,−2− 4 + 12) = (3, 6)

3.7.4: The conversion in this direction is more difficult. In class I gave two methods. The

first is to set up a system of three equations and three unknowns. If (r, s, t)4ABC = (0, 0),

then:

3r + 4s+ 4t = 0

−2r − 2s− 6t = 0

r + s+ t = 1

The solution to this system gives (0, 0) = (r, s, t)4ABC = (4,−5/2,−1/2)4ABC

The other option is to use the more genera formula I developed using the matrix M

whose colums are B −A and C −A:

M =

[
1 1

0 −4

]

For a given point X = (r, s, t)4ABC we know

[
s

t

]
= M−1 (X −A):[

s

t

]
= M−1

([
4

5

]
−

[
3

−2

])
=

[
1 1/4

0 −1/4

][
1

7

]
=

[
11/4

−7/4

]
Having found s and t, we calculate r = 1 − s − t = 0, so (4, 5) = (0, 11/4,−7/4)4ABC .

The advantage to this second method is that you can find M−1 and then quickly use it for

both conversions, instead of having to set up two separate systems of equations. But either

method is fine if you get the correct answer.

3.7.5: The two conditions in Proposition 15 follow very quickly from Definition 14; in the

first, let t = 0, and in the second let s = t = 1. So the two conditions are special cases

of the more general condition in the definition. We need to show that, given those two
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conditions, we can also show the more general statement is true. With a bit of careful

thought and/or relabeling, that’s not so bad. Let s, t ∈ R and V,W ∈ R2:

T (sV + tW ) = T (A+B) ( for A = sV , B = tW )

= T (A) + T (B) ( by part (ii))

= T (sV ) + T (tW )

= sT (V ) + tT (W ) ( by part (i))

3.7.9: To show that an isometry U preserves half planes, it suffices to take any line l and

two points P , Q on the same side of l – i.e. any two points in the half plane on that side

of l – and show that U(P ), U(Q) are on the same side of U(l). The whole proof rests

on Theorem 6, specifically that isometries preserve lines, so U(l) is a line, and isometries

preserve betweenness.

Suppose U(P ) and U(Q) are on opposite sides of the line U(l). Then by definition, there

exists a point on U(l) which is on the line segment between U(P ) and U(Q). For consistency

in notaion, I’ll call that point U(R). [Because U is a bijection, I know there exists a unique

point R which is sent to U(R).] Since U and U−1 preserve betweenness, R is between P

and Q. But then P and Q were on opposite sides of the line l to begin with! Hence if P

and Q are on the same side of l, U(P ) and U(Q) must be on the same side of U(l).

There are other possible approaches to this problem. Many people used the fact that U
must preserve angles and wrote a proof along these lines. Take a point A on the line l, and

suppose P and Q are on opposite sides of l, as in the following picture.

You can then say that |∠PAQ| = |∠U(P )U(A)U(Q)|. However, this isn’t quite enough to

prove U(P ) and U(Q) are on the same side of U(l). You could have a situation like this:

To avoid this possibility, you need to keep track of all the angles in the original picture,

and their sum:

|∠UAP |+ |∠PAQ|+ |∠QAV | = π
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An isometry U will send these “side-by-side” angles to three more angles which are side by

side and still add up to π. You can use that fact as a basis for arguing that the half plane

is preserved.

3.7.10: Any counter example will do. Here’s a simple one: U(X) = X + (3, 2), a = b = 1,

P = (0, 0), Q = (1, 0). Then:

U(aP + bQ) = U( (1, 0) ) = (4, 2)

which is quite different than

aU(P ) + bU(Q) = (3, 2) + (4, 2) = (7, 4)

3.7.11: The back of the book shows how to extend Lemma 4 from a combination of two

vectors to three vectors. (If you have trouble following the proof, I’ve walked through it a

number of times with students who were working on this assignment, and would be happy

to do so again in office hours.) So to complete the proof by induction, we assume

U(a1P1 + · · ·+ an−1Pn−1) = a1U(P1) + · · ·+ an−1U(Pn−1)

whenever a1 + · · ·+ an−1 = 1, and now have to show the same is true with a combination

of n vectors instead:

U(a1P1 + · · ·+ an−1Pn−1 + anPn) = a1U(P1) + · · ·+ an−1U(Pn−1) + anU(Pn)

if a1 + · · ·+ an−1 + an = 1 . First I note that the ai’s can’t all equal 1, or else if a1 + · · ·+
an−1 + an = n 6= 1. So it’s safe for me to assume an 6= 1; if not, I would just swap an and

Pn with whatever term has an ai 6= 1. Now I group terms together:

U (a1P1 + ·+ an−1Pn−1 + anPn) = U (1 · (a1P1 + ·+ an−1Pn−1) + anPn)

= U
(

(1− an) · (a1P1 + ·+ an−1Pn−1)
1− an

+ anPn

)
= U

(
(1− an) ·

(
a1

1− an
P1 + ·+ an−1

1− an
Pn−1

)
+ anPn

)
The reason I multiplied and divided by (1− an) is that now I can apply Lemma 4: I have

two vectors (one of which is a combination of n−1 vectors) multiplied by coefficients which

add to 1. Hence:

U (a1P1 + ·+ an−1Pn−1 + anPn) = (1− an)U
(

a1

1− an
P1 + ·+ an−1

1− an
Pn−1

)
+ anU(Pn)

Now notice that

a1

1− an
+ · · ·+ an−1

1− an
=
a1 + · · ·+ an−1

1− an
=

1− an

1− an
= 1
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So we can apply our assumed result about a linear combination of n− 1 vectors and we’ll

be finished. To tie everything together I will write the entire string of calculations from

beginning to end:

U (a1P1 + ·+ an−1Pn−1 + anPn) = U (1 · (a1P1 + ·+ an−1Pn−1) + anPn)

= U
(

(1− an) · (a1P1 + ·+ an−1Pn−1)
1− an

+ anPn

)
= U

(
(1− an) ·

(
a1

1− an
P1 + ·+ an−1

1− an
Pn−1

)
+ anPn

)
= (1− an)U

(
a1

1− an
P1 + ·+ an−1

1− an
Pn−1

)
+ anU(Pn)

= (1− an)
(

a1

1− an
U(P1) + ·+ an−1

1− an
U(Pn−1)

)
+ anU(Pn)

= a1U(P1) + · · ·+ an−1U(Pn−1) + anU(Pn)

Whew!

Jonathan Rogness <rogness@math.umn.edu> October 6, 2008
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