
Math 5335: Geometry Homework 5 Solutions

The following is a non-comprehensive list of solutions to homework problems. In some cases I may give an

answer with just a few words of explanation. On other problems the stated solution may be complete. As

always, feel free to ask if you are unsure of the appropriate level of details to include in your own work.

Please let me know if you spot any typos and I’ll update things as soon as possible.

4.11.3: Since ||4ABC|| = 1
4

√
2b2c2 + 2c2a2 + 2a2b2 − a4 − b4 − c4, we see that

16||4ABC||2 = 2b2c2 + 2c2a2 + 2a2b2 − a4 − b4 − c4.

Hence we can rewrite the formula for the orthocenter in Proposition 7 as

(
a4 − (b2 − c2)2

16||4ABC||2
,
b4 − (c2 − a2)2

16||4ABC||2
,
c4 − (a2 − b2)2

16||4ABC||2

)4

4.11.4: Heron’s Formula says ||4ABC|| =
√

p
2

(
p
2 − a

) (
p
2 − b

) (
p
2 − c

)
. We’re given a = 7, b = 13, and

c = 17, and can calculate that p = a+b+c = 37. Hence ||4ABC|| =
√

28083/16 ≈ 41.895 square units.

4.11.7: We have the following barycentric coordinates for the centroid G, the orthocenter H and the

circumcenter J :

G = (1/3, 1/3, 1/3)4 (from Theorem 3)

H =
(
a4 − (b2 − c2)2

16||4ABC||2
,
b4 − (c2 − a2)2

16||4ABC||2
,
c4 − (a2 − b2)2

16||4ABC||2

)4
(from Problem 3)

J =
(
a2(b2 + c2 − a2)

16||4ABC||2
,
b2(c2 + a2 − b2)
16||4ABC||2

,
c2(a2 + b2 − c2)
16||4ABC||2

)4
(from Proposition 15)

Proposition 10 in Chapter 3 says we can compute 1
3H + 2

3J “coordinate-wise.” From here on out

the problem becomes one of algebra: tedious but straightforward. For example, the work for the first

coordinate is:
1
3

(
a4 − (b2 − c2)2

16||4ABC||2

)
+

2
3

(
a2(b2 + c2 − a2)

16||4ABC||2

)
=
a4 − (b2 − c2)2 + 2a2(b2 + c2 − a2)

48||4ABC||2

=
a4 − b4 + 2b2c2 − c4 + 2a2b2 + 2a2c2 − 2a4

48||4ABC||2

=
2b2c2 + 2c2a2 + 2a2b2 − a4 − b4 − c4

48||4ABC||2

=
16||4ABC||2

48||4ABC||2
= 1/3

4.11.8: Suppose the orthocenter of 4ABC is a vertex – say C. Then the altitudes from A and B must

meet at C, which means AC and BC are perpendicular. Hence this happens if and only if 4ABC has

a right angle at C. (If you didn’t get this problem correct, draw a picture. Also draw in the altitude
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from C and make sure you realize why it’s concurrent with the other two altitudes.)

4.11.10: If 4ABC is equilateral, then a = b = c, so the incenter (by Theorem 18) is

(
a

a+ b+ c
,

b

a+ b+ c
,

a

a+ b+ c

)4
=
(

a

a+ a+ a
,

a

a+ a+ a
,

a

a+ a+ a

)4
=
(

1
3
,

1
3
,

1
3

)4
,

which is the centroid. Conversely, suppose the centroid and incenter are equal:

(
a

a+ b+ c
,

b

a+ b+ c
,

a

a+ b+ c

)4
=
(

1
3
,

1
3
,

1
3

)4
Equating the parts of the barycentric coordinates (and multiplying by 3) gives three equations:

3a = a+ b+ c

3b = a+ b+ c

3c = a+ b+ c

You can check that this system of equations is satifsfied if and only if a = b = c, so that the triangle

is equilateral. (Come talk to me if you had trouble with this system.)

4.11.19: If you label A = (0, 0), B = (5, 0) and C = (−4,−4), you can calculate that

a = |BC| =
√

97

b = |AC| = 2
√

2

c = |AB| = 5

After that you can use formulas throughout the chapter to calculated the requested points. To find

the equation take any two points which you know to be on the Euler line, and find the equation of the

line through them.

4.11.26: If 4ABC is equilateral, then a = b = c, so you can use the barycentric coordinates of the

incenter and orthocenter to show these are both (after much simplication) equal to
(

1
3 ,

1
3 ,

1
3

)4.

In the other direction, we assume that the incenter equals the orthocenter and must show that

the triangle is equilateral. One way is to set up a huge system of equations where the barycentric

coordinates of the orthocenter are equal to the barycentric of the coordinates of the incenter, and show

this is only true of a = b = c. That’s possible but messy. A geometric proof seems simpler, except that

it’s hard without the ASA congruence theorem for triangles, which makes its appearance in Chapter

5. Here’s a hybrid approach, which uses a bit of geometry followed by algebraic computations.

Suppose the incenter and orthocenter are the same point; in the following picture I’ll refer to it as

W . First, note that the angle bisectors must equal the altitudes, which is why I only have one line

emanating from each vertex. (Why is this the case? Consider the vertex C on top. The angle bisector

and altitude each start at C and go through W by our assumption. Because they share two points,

they must be contained in the same line!)
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Because CW is an angle bisector, |∠ECW | = |∠FCW |. Together with the knowledge that

|∠WEC| = |∠WFC| = π/2

(since AE and BF are altitudes), we can conclude that |∠EWC| = |∠FWC|, since the angles in each

of 4CWE and 4CWF must sum to π.

Furthermore, by Proposition 17, W is equidistant from CA and CB, which means |WF | = |WE|.
Hence by the SAS congruence criterion (Theorem 27 in Chapter 3),

4CWE ∼= 4CWF

It immediately follows that FC ∼= EC.

Here’s the algebraic part of my proof. By Proposition 5, the barycentric coordinates of E and F

are

E =
(

0,
a2 + b2 − c2

2a2
,
a2 + c2 − b2

2a2

)4
F =

(
b2 + a2 − c2

2b2
, 0,

b2 + c2 − a2

2a2

)4
and, of course, C = (0, 0, 1)4. If you use the barycentric distance formula (Proposition 28 in Chapter

3) you can check

|EC| = |FC|

(a2 + b2 − c2)2

4a2
=

(a2 + b2 − c2)2

4b2

That equality could hold two ways: (1) the numerators are both 0, so a2 + b2 = c2 and we have a

right triangle. But this is impossible because the orthocenter equals the incenter and hence is in the

interior (see problem 8)! The other possibility is (2) a = b. By symmetry, you could show that b = c

and a = c, finishing the proof.

Jonathan Rogness <rogness@math.umn.edu> November 10, 2008
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