
Math 5335: Geometry Homework 3 Solutions

The following is a non-comprehensive list of solutions to homework problems. In some cases I may give an
answer with just a few words of explanation. On other problems the stated solution may be complete. As
always, feel free to ask if you are unsure of the appropriate level of details to include in your own work.

Please let me know if you spot any typos and I’ll update things as soon as possible.

3.6.29: This type of problem will be discussed in much more detail in Chapter 7, so I will just de-
scribe the basic construction here; even so, it’s long and somewhat confusing, so if you’d like more
explanation I’ll walk you through it in person. To start with, I’ve drawn a picture of the six points.
Notice that I will not be able to find an isometry which maps the first three points onto the second;
that would mean the two triangles in the picture are congruent, which is visibly false.

However, the two blue segments emanating from (3, 2) form a right angle, as do the two orange
segments. So if I could rotate the entire plane about (3, 2) just enough to rotate the blue right angle
onto the orange right angle, I’ll be done.

How much of a rotation do I need? Let θ = |∠(1, 1)(3, 2)(2, 2)|. I don’t know what θ is, although
by drawing in a right triangle–say, from (1, 1) to (3, 2) to (1, 2)–I can see that

cos θ = 2/
√

5 and sin θ = 1/
√

5

Because I don’t know how to rotate at any point except the origin, I move everything everything
there:

X → X −

[
3
2

]
Now I use the rotation matrix which rotates the plane by an angle of θ:

Rθ =

[
cos θ − sin θ
sin θ cos θ

]

EXCEPT... Rθ rotates in a counter-clockwise direction about the origin, and I want to rotate
clockwise. So I replace θ with −θ to change the direction:

R−θ =

[
cos (−θ) − sin (−θ)
sin (−θ) cos (−θ)

]
=

[
cos θ sin θ
− sin θ cos θ

]
=

[
2/
√

5 1/
√

5
−1/
√

5 2/
√

5

]
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So after moving to the origin and rotating, I have

X → R−θ

(
X −

[
3
2

])

To finish, I move everything back to where I started:

U(X) = R−θ

(
X −

[
3
2

])
+

[
3
2

]

=

[
2/
√

5 1/
√

5
−1/
√

5 2/
√

5

](
X −

[
3
2

])
+

[
3
2

]

=

[
2/
√

5 1/
√

5
−1/
√

5 2/
√

5

]
X +

[
3 + 8/

√
5

2 + 1/
√

5

]

You can plug in X =

[
4
0

]
to verify that U sends (4, 0) to a point on the line x = 3; similarly,

U(1, 1) is on the line y = 2. So this U maps the blue right angle onto the one formed by the horizontal
and vertical orange line segments.

4.11.9: If 4ABC is equilateral, then a = b = c, so the incenter (by Theorem 4.17) is

(
a

a+ b+ c
,

b

a+ b+ c
,

a

a+ b+ c

)4
=
(

a

a+ a+ a
,

a

a+ a+ a
,

a

a+ a+ a

)4
=
(

1
3
,

1
3
,

1
3

)4
,

which is the centroid. Conversely, suppose the centroid and incenter are equal:

(
a

a+ b+ c
,

b

a+ b+ c
,

a

a+ b+ c

)4
=
(

1
3
,

1
3
,

1
3

)4
Equating the parts of the barycentric coordinates (and multiplying by 3) gives three equations:

3a = a+ b+ c

3b = a+ b+ c

3c = a+ b+ c

You can check that this system of equations is satifsfied if and only if a = b = c, so that the triangle
is equilateral. (The fastest way to solve this system: notice that 3a, 3b and 3c are all equal to each
other...)

4.11.24: If 4ABC is equilateral, then a = b = c, so you can use the barycentric coordinates of the
incenter and orthocenter to show these are both (after much simplication) equal to

(
1
3 ,

1
3 ,

1
3

)4.
In the other direction, suppose the incenter and orthocenter are the same point; in the following

picture I’ll refer to it as W . First, note that the angle bisectors must equal the altitudes, which is
why I only have one line emanating from each vertex. (Why is this the case? Consider the vertex
C on top. The angle bisector and altitude each start at C and go through W by our assumption.
Because they share two points, they must be contained in the same line!)
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In particular, because AE is an angle bisector, we have

∠BAE ∼= ∠CAE

But AE is also an altitude, meaning

∠AEB ∼= ∠AEC

(They’re both right angles.) Via email I told everybody you could use the ASA congruence theorem
for this problem, so we apply it and conclude

4AEC ∼= 4AEB

Hence AC ∼= AB – that is, b = c. Now you could do the same work (starting at the vertex B instead
of A) to show that a = c. So overall a = b = c and 4ABC is equilateral.

4.11.44: From previous problems we know that, if a triangle is equilateral, then the centroid, incenter
and orthocenter are all the same; because the altitudes are also the perpendicular bisectors of the
sides, we can toss the circumcenter into that list as well. In this problem we prove the Fermat Point
belongs in that list, too. The following picture shows the construction of the Fermat Point F for a
triangle 4ABC, as described in section 4.9.

Suppose we know that the Fermat Point F happens to be the centroid, and we wish to prove that
4ABC is equilateral. We can use the diagram above, except we can’t assume a = b = c or anything
equivalent – that’s what we’re trying to prove! We know that the exterior triangles are equilateral,
but we don’t yet know that they’re the same size.
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Here’s what we do know. Since F is the centroid, AG is a median and |GC| = |GB|. Hence (by
SSS in Chapter 3) we know 4LGC ∼= 4LGB. But then |∠LGC| = |∠LGB| and these angles add to
form a straight angle, meaning each of them is π/2. Hence |∠FGC| = |∠FGB| = π/2 as well, and
AG is not only a median but also an altitude and perpendicular bisector! By symmetry the same
holds true for BH and CI. So now F is not only the Fermat Point and the centroid, but also the
orthocenter and circumcenter!

Because F is the circumcenter, |FA| = |FB| = |FC|. Also, because F is the Fermat Point (which
by Theorem 28 is also the Fermat minimizer) |∠AFB| = |∠BFC| = |∠CFA| = 2π/3. Hence (by
SAS in Chapter 3),

4ABF ∼= 4BCF ∼= 4CAF

from which it quickly follows that a = b = c, so 4ABC is equilateral.
Conversely, suppose 4ABC is equilateral and let F be the centroid. By previous problems it’s

also the incenter and orthocenter, and AG, BH and CI are medians, angle bisectors, and altitudes.
(For this part of the problem, ignore L, M , N , and any of the segments which are outside of the
original triangle.) Using ASA or other congruence theorems, you can quickly show that all six of the
little triangles formed inside 4ABC are congruent. That means each of the six angles surrounding
the centroid F are congruent, so each one is 360◦/6 = 60◦. But then

|∠AFC| = |∠CFB| = |∠BFA| = 120◦ = 2π/3

But forming those angles of 120◦ proves that the centroid F is the Fermat minimizer and therefore,
by Theorem 28, the Fermat Point.

5.3.1: Differentiate using the power rule and chain rule, etc.:

d

dx
sinx =

d

dx

√
1− cos2 x =

(
1− cos2 x

)1/2
=

1
2

(1− cos2x)−1/2 · (−2(cosx)(cosx)′)

=
1
2
· 1

sinx
· (−2(cosx)(− sinx)) = cosx

5.3.18: (i) Yes, such a triangle exists, because a, b, c satisfy the inequalities in Proposition 9. Here’s
a picture of such a triangle (where GeoGebra has rounded the coordinates):

(iii) No such triangle exists, by Proposition 9, because 5 is not less than 2 + 2.
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5.3.23: If tanx = sin x
cos x , then the domain is all x for which cosx 6= 0, which is the set of all real numbers

except x = π/2 + kπ, k ∈ Z. We can compute the derivative directly using the quotient rule:

d

dx
tanx =

d

dx

sinx
cosx

=
(cosx)(sinx)′ − (sinx)(cosx)′

cos2 x

=
cos2x+ sin2 x

cos2 x
=

1
cos2 x

= sec2 x

For x ∈ (−π/2, π/2), d
dx tanx = sec2 x is defined and positive, which means tanx is strictly

increasing on that interval. As discussed in the solutions to Homework #2, that implies tanx is
injective on that interval.

Jonathan Rogness <rogness@math.umn.edu> November 7, 2009
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