
Math 5335: Geometry Homework 8 Solutions

The following is a non-comprehensive list of solutions to homework problems. In some cases I may give an
answer with just a few words of explanation. On other problems the stated solution may be complete. As
always, feel free to ask if you are unsure of the appropriate level of details to include in your own work.

Please let me know if you spot any typos and I’ll update things as soon as possible.

6.5.16: This problem is an application of Theorem 18. Here’s our setup. Let ABCD be a quadrilateral
whose vertices are on a circle centered at K. Assume K is on the same side of AC as D. By relabeling
points I could always ensure that’s the case, unless AC goes through K, meaning it is a diameter. I’ll
deal with that case separately.

By the first part of Theorem 18, |∠AKC| = 2|∠ADC|. By the third part, |∠AKC| = 2π−2|∠ABC|.
Thus 2|∠ADC| = 2π − 2|∠ABC|; rearrange and divide by two to get |∠ABC| + |∠ADC| = π. Since
all four angles in this convex quadrilateral must add up to 2π, the remaining vertex angles at A and C
must also add to π.

The remaining case, where AC is a diameter, is shorter than the above work. In that case the second
part of Theorem 18 says the vertex angles at B and D are both π/2, in which case they certainly add
to π, and the angles at A and C will add up to 2π − π = π as above.

6.5.24: The fastest way to complete this problem is a “cycle” of proofs like (i)⇒ (ii)⇒ (iii)⇒ (i), which
amounts to three proofs. Unfortunately in this case it seems hard to make a connection between (ii)
and (iii), so it was probably faster to prove (i) ⇔ (ii) and (i) ⇔ (iii), a total of four proofs. I’ll give
brief outlines of the proofs below. Regardless of which condition from (i) to (iii) we’re assuming, we
always know that ABCD in the following picture is a parallelogram, so the opposite sides are always
parallel and congruent, by Proposition 3.

A B

CD

(i)⇒ (ii): Assume ABCD is a rectangle, so all four vertex angles are congruent. Because it’s also a
parallelogram, AD ∼= BC. Hence SAS tells us that 4ABD ∼= 4BAC; in particular AC ∼= BD,
proving (ii).
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(ii)⇒ (i): Now assume AC ∼= BD. Using the fact that opposite sides of a parallelogram are congru-
ent, SSS tells us that 4ABD ∼= 4BAC; in particular ∠A ∼= ∠B. You can use similar reasoning to
show ∠B ∼= ∠C and ∠C ∼= ∠D, which proves (i).

(i)⇒ (iii): Assume ABCD is a rectangle, so all four vertex angles are congruent. Because it’s also a
parallelogram, the opposite sides are congruent. If you insert the midpoints of the sides, you can
label congruent segments as shown in this picture:

A B

CD

P

Q

R

S

Because the vertex angles of ABCD are congruent, SAS tells us that the four small triangles are
congruent, which means the four segments connecting P , Q, R and S in the diagram are congruent.
That menas PQRS is a rhombus, proving (iii).

(iii)⇒ (i): Assume PQRS is a rhombus. Then all four triangles in the above picture are congruent
by SSS. That means the angles at A, B, C and D are congruent, proving (i).

6.5.48: Glancing over some of the homeworks it seems most people chose kites. Here’s another possibility.

7.9.6,7: Note that the language is a little ambiguous here about which isometry to do first, the translation
or the reflection. I’ll accept either answer—they turn out to be the same!—and will compute both here.

The translation in these problems is easy to write a formula for: T (X) = X + (−3,−6) or, if you
prefer, T (x, y) = (x−3, y−6). The equation for the reflection is trickier. We know 〈(2,−1), (x, y)〉 = −3
is equivalent to 2x− y = −3, or y = 2x+ 3. So the slope of the mirror is 2, and hence the angle it forms
with a horizontal line is θ = arctan 2 ≈ 63.4◦. The y-intercept form of the line makes it clear that (0, 3)
is on the line. Hence a matrix formula for the reflection across this line is:

M(X) =
[
cos 2θ sin 2θ
sin 2θ − cos 2θ

] ([
X

]
−

[
0
3

])
+

[
0
3

]

Here’s a picture of the line:
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(-2.51, 6.78)
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63.43°
(0, 3)

Using the triangle in the picture, we see that

cos 2θ = cos θ cos θ − sin θ sin θ =
1
5
− 4

5
= −3

5

sin 2θ = 2 cos θ sin θ =
4
5

Hence our formula for the reflection becomes

M(X) =
[
−3/5 4/5
4/5 3/5

] ([
X

]
−

[
0
3

])
+

[
0
3

]
Now consider the two compositions (check the parentheses carefully to make sure you see the differ-
ences!):

T ◦M(X) =
([
−3/5 4/5
4/5 3/5

] ([
X

]
−

[
0
3

])
+

[
0
3

])
+

[
−3
−6

]
M◦ T (X) =

[
−3/5 4/5
4/5 3/5

] (([
X

]
+

[
−3
−6

])
−

[
0
3

])
+

[
0
3

]
If you distribute across the parenthesis, multiply the constant vectors by the matrix, and collect terms,
you’ll find that these are both (!) equal to[

−3/5 4/5
4/5 3/5

] [
X

]
+

[
−27/5
−24/5

]
So with these particular choices, it doesn’t matter if you do the reflection first and then the trans-

lation, or vice versa; the answers to #6 and #7 are the same. (Why does it turn out that way? Hint:
(−3,−6) = −3(1, 2) could serve as a direction indicator for the line, so the composition in either order
gives the same glide reflection!)

7.9.13: Equation (7.15), which I developed in a slightly different way in class, tells us that the formula
for a central inversion (i.e. a rotation by π) about a point C is CC(X) = −X + 2C or, if C = (h, k),

CC(x, y) = −(x, y) + 2(h, k) = (2h− x, 2k − y)

The only way CC can leave (x, y) fixed (i.e. unchanged) is if

x = 2h− x
y = 2k − y

The only solution to this system is x = h and y = k, i.e. X = C.

7.9.18: Here’s a picture from GeoGebra showing the original 4ABC and its images under the various
isometries. Let me know if you have trouble matching the images up to the isometries, or calculating
specific points, etc.
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Jonathan Rogness <rogness@math.umn.edu> November 17, 2009
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