Math 5335
Name (Print): Solutions
Fall 2017
Exam 2
12/6/17
Time Limit: 75 Minutes

This exam contains 7 pages (including this cover page) and 11 problems. Check to see if any pages are missing. Enter all requested information on the top of this page, and put your initials on the top of every page, in case the pages become separated.

You may not use your books, notes, or any calculator on this exam.
You are required to show your work on each problem on this exam. The following rules apply:

- If you are applying a theorem, you should indicate this fact, and explain why the theorem may be applied.
- Do not trivialize a problem. If you are asked to prove a theorem, you cannot just cite that theorem.
- Organize your work in a reasonable, tidy, and coherent way. Work that is disorganized and jumbled that lacks clear reasoning will receive little or no credit.
- Unsupported answers will not receive full credit. An answer must be supported by calculations, explanation, and/or algebraic work to receive full credit. Partial credit may be given to wellargued incorrect answers as well.

Page	Points	Score
2	17	
3	15	
4	13	
5	20	
6	22	
7	13	
Total:	100	

- If you need more space, use the back of the pages. Clearly indicate when you have done this.

Do not write in the table to the right.

You may use the following results on the exam without defining or proving them.
The distance between points (a, b) and (a, d) in the Poincaré Half Plane is $|\ln (d / b)|$.
The distance between points P_{1} and P_{2} on the line $(x-\omega)^{2}+y^{2}=\rho^{2}$, with angles $t_{1}=\left|\angle(\omega+\rho, 0)(\omega, 0) P_{1}\right|$ and $t_{2}=\left|\angle(\omega+\rho, 0)(\omega, 0) P_{2}\right|$ is

$$
\ln \left[\left(\csc t_{2}-\cot t_{2}\right) /\left(\csc t_{1}-\cot t_{1}\right)\right]
$$

1. Let $A B C D$ be quadrilateral which is simple, but not necessarily a parallelogram, trapezoid, or other familiar shape. Let W, X, Y and Z be the midpoints of the sides, as shown in the generic diagram below.
(a) (4 points) What is W in terms of A and B ? Write similar expressions for X, Y, and Z.

$$
W=\frac{A+B}{2} \quad X=\frac{B+C}{2} \quad Y=\frac{C+D}{2} \quad Z=\frac{A+D}{2}
$$

(b) (8 points) Prove that $W X Y Z$ is a parallelogram.

Many methods possible, egg.:

(Could show any of the other
conditions in Thy 8.4)
2. (5 points) Find the area of quadrilateral $A B C D$ if $A=(-1,0), B=(5,3), C=(6,7)$ and $D=(0,4)$. If you use a formula, explain why it applies. (You can use the grid if it's helpful, or ignore it.)

$$
\begin{aligned}
& B-A=(5,3)-(-1,0)=(6,3)=C-D \\
& D-A=(1,4)=C-B
\end{aligned}
$$

Thus $A B C D$ is a $l l$ gram and its area is

$$
\begin{aligned}
\left|\operatorname{det}\left[\begin{array}{ll}
u & v
\end{array}\right]\right| & =\left|\operatorname{det}\left[\begin{array}{ll}
6 & 1 \\
3 & 4
\end{array}\right]\right| \\
& =|24-3| \\
& =21
\end{aligned}
$$

3. (5 points) Prove that the perpendicular bisectors of (the sides of) $\triangle A B C$ all intersect in a point J which is equidistant to all three vertices. (You can use the diagram below for convenience but your argument must apply to all triangles.)

Let J be the intersection of 1 bisectors of $\overline{A B}$ and $\overline{B C}$. (Because $\overline{A B}, \overline{B C}$ not \|, the \perp bisectors aren't \| either, hence intersect.)

Thus $|\overline{J A}|=|\overline{J B}|$ and $|\overline{J B}|=|\overline{J C}|$. By transitivity, $|\bar{J} A|=|\overline{J C}|$. Hence J is also on \perp bisector of $\overline{A C}$.
4. A corollary to Theorem 7.16 in the book says that, unless $\triangle A B C$ is equilateral, there is a unique line through its centroid, orthocenter and circumcenter. This line is known as its Euler Line.
(a) (7 points) Let $\triangle A B C$ be isosceles, with $\overline{A C} \cong \overline{B C}$, as shown below. Prove the Euler Line of $\triangle A B C$ is the median from C, which intersects $\overline{A B}$ at D as shown.

D midst of $\overline{A B} \Rightarrow \overline{A D} \simeq \overline{B D}$. By SSS congruence,
$\triangle A D C \simeq \triangle B D C$. Thus
(1) $\angle A D C$ and $\angle B D C$ are congment and combine to form a right angle, so each measwes $\pi / 2=90^{\circ}$. Thus $\overleftrightarrow{C D}$ is an allude...
(2)... and, because $\overline{A D} \simeq \overline{B D}, \overleftrightarrow{C D}$ is \perp bisector, too.

Thus $\overleftrightarrow{C D}$ is a median, \perp bisector and altitude, so contains the centroid, circumcenter and orthocenter; thus it's the Euler line.
(b) (3 points) Why does an equilateral $\triangle A B C$ not have an Euler Line?

In an equilateral $\triangle A B C, G=H=J$, so those "three" points don't determine a line.
5. (5 points) Let $A=(0,0), B=(5,2)$ and $C=(1,7)$. Find the centroid of $\triangle A B C$, in both barycentric and rectangular coordinates.

$$
\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)^{\triangle A B C}=(2,3)
$$

6. In $\triangle A B C$ below, $\overline{A E}$ and $\overline{C D}$ are medians, intersecting at the centroid G. Let $x=\|\triangle A B C\|$, the area of the large triangle.
(a) (5 points) Explain why $\|\triangle A C E\|=\frac{1}{2} x$.

Treating $\overleftrightarrow{B C}$ as the "base" line, $\triangle A B C$ and $\triangle A E C$ share an altitude from A to $\overleftrightarrow{B C}$, hence the same height. Since E is the midpoint of $\overline{B C}$,

$$
\begin{aligned}
\|\triangle A E C\| & =\frac{1}{2}|\overline{E C}| \cdot h=\frac{1}{2}\left(\frac{1}{2}|\overline{B C}|\right) h \\
& =\frac{1}{2}\left(\frac{1}{2}|\overline{B C}| \cdot h\right) \\
& =\frac{1}{2} X .
\end{aligned}
$$

(b) (3 points) Find $\|\triangle A C G\|$ in terms of x. Justify your answer.

Because G is the centroid, it's $1 / 3$ of way from E to A, so $|\overline{G E}|=2|\overline{G A}|$. Thus (treating $\overline{A E}$ and $\overline{G E}$ as bases, and an altitude from C),

$$
\|\triangle A C G\|=\frac{2}{3}\|\triangle A C E\|=\frac{2}{3} \cdot \frac{1}{2} x=\frac{1}{3} x
$$

(or can use all 3 medians to split Δ into 6Δ 's of equal area $\left(=\frac{x}{6}\right)$, as in $H \omega$, and Combine two of them fo form $\triangle A C G$ with area $\frac{2 x}{6}=\frac{1}{3} x$.)
7. (a) (5 points) Let m be a circle centered at C with radius ρ. Prove: if $X \in m$, then $X^{\prime}=X$, where X^{\prime} is the reflection (or inversion) of X across m.
$X^{\prime} \in \overrightarrow{O X}$ chosen such that

$$
\begin{aligned}
& |\overline{D x}| \cdot\left|\overline{D x^{\prime}}\right|=\rho^{2} \\
& \rho|\overline{o x}|=\rho^{2} \\
& |\overline{o x}|=\rho
\end{aligned}
$$

The only possibility is $X^{\prime}=X$.
(without we only know $X^{\prime} \in m$, not necessarily $X^{\prime}=X$.)

(b) (5 points) Let m be a circle centered at C, and suppose d is a circle containing C which intersects m at points P and Q as shown. Sketch d^{\prime}, the reflection of d across m. Briefly justify your answer.

$C \in d \Rightarrow \infty \in d^{\prime} \Rightarrow d^{\prime}$ is a line.
$P, Q \in m$ are fixed, so $P, Q \in d^{\prime}$
Thus $d^{\prime}=\overleftrightarrow{P Q}$
(c) (5 points) Let m be the circle $x^{2}+y^{2}=1$ and c the circle $x^{2}+y^{2}=4$. Sketch and find an equation (with brief justification) for c^{\prime}, the reflection of c across m.

$$
\begin{aligned}
& X=(2,0) \in C \text { sent to } X^{\prime} \in \overrightarrow{O X}(=\text { pos. } x \text {-axis }) \text { s.t. } \\
& \qquad\|x\| \cdot\left\|x^{\prime}\right\|=1 \Rightarrow 2\left\|x^{\prime}\right\|=1 \Rightarrow\left\|x^{\prime}\right\|=\frac{1}{2} \Rightarrow X^{\prime}=\left(\frac{1}{2}, 0\right)
\end{aligned} \text { Similarly, }(0, \pm 2) \mapsto\left(0, \pm \frac{1}{2}\right),(-2,0) \mapsto\left(-\frac{1}{2}, 0\right) \text { } l
$$

Thus $c^{\prime}: x^{2}+y^{2}=\left(\frac{1}{2}\right)^{2}$
(d) (5 points) Let m be the circle $x^{2}+y^{2}=1$ and ℓ the line $y=-x$. Sketch and find an equation (with brief justification) for ℓ^{\prime}, the reflection of ℓ across m.

$$
\begin{aligned}
& 0 \in l \Rightarrow \infty \in l^{\prime} \quad\left(\text { so } l^{\prime}\right. \text { is a line } \\
& \infty \in l \Rightarrow 0 \in \ell^{\prime} \\
& P, Q \in l \text { are on } m, \text { so } P, Q \in \ell^{\prime}
\end{aligned}
$$

Thus l^{\prime} is also the line $y=x$

On this page, all points, lines, segments and distances are in the Poincare Half Plane.
8. Let $A=(-3,1), B=(-1,1)$ and $C=(3,1)$.
(a) (9 points) Sketch the (Poincaré) lines $\overleftrightarrow{A B}$ and $\overleftrightarrow{B C}$. Find the equation for each line.

$\stackrel{A B}{ }$ centered at $(-2,0)$, radius $\sqrt{2}$

$$
\begin{gathered}
(x+2)^{2}+y^{2}=2 \\
\stackrel{B C}{ } \text { centered at }(1,0) \text {, radius } \sqrt{5} \\
(x-1)^{2}+y^{2}=5
\end{gathered}
$$

(b) (5 points) Find the length of segment $\overline{B C}$. (For full credit, your final answer shouldn't contain any trig functions, but you don't have to evaluate any logarithms.)

$$
\begin{aligned}
& \text { Using formula on cover page, } \\
& |\overline{B C}|=\left|\ln \frac{\csc t_{2}-\cot }{\csc t_{1}-\cot t_{J}}\right|=\left|\ln \frac{\sqrt{5}+2}{\sqrt{5}-2}\right| \\
& \left(C_{\text {an }}\right. \text { use The Ill. if you memorized it.) }
\end{aligned}
$$

9. Let ℓ be the line directed by $\mathfrak{A}=(-2,0)$ and $\mathfrak{B}=(\infty, 0)$.
(a) (5 points) Sketch ℓ on the grid below. Then sketch and give an equation for a line m which contains the point $(0,2)$ and is asymptotically parallel to ℓ.

$$
m: x^{2}+y^{2}=4 \quad(\text { or } x=0 \text { works, too! })
$$

(b) (3 points) Give an equation for a line k containing $(1,1)$ which is ultra parallel to ℓ, or explain why none exists.

$$
(x-1)^{2}+y^{2}=1
$$

10. (5 points) Given $\triangle A B C$, let D and E be the midpoints of $\overline{A C}$ and $\overline{B C}$ as shown. Using any appropriate methods from the course, prove $\overline{D E} \| \overline{A B}$ and $|\overline{D E}|=\frac{1}{2}|\overline{A B}|$

Method!

$$
\overline{E-D}=\frac{B+C}{2}-\frac{A+C}{2}=\frac{1}{2}(B-A)
$$

Thus $E-D \| B-A$ and $E-D$ is half as long as $B-A$.

Method 2
Because D, E ore midpoints of $\overline{A C}, \overline{B C}$, we have $\frac{|\overline{A C}|}{|\overline{D C}|}=\frac{|\overline{E C}|}{|\overline{B C}|}=2$.
Note also that $\triangle A C B$ and $\triangle B C E$ share
the angle γ. Thus $\triangle A C B \sim \triangle D C E$ by $S A S$
Similarity (\#2 on previous page). That means
(a) $\frac{|\overline{A B}|}{|\overline{D E}|}$ is also 2 , as needed, and
(b) $\angle C D E \simeq \angle C A B \Rightarrow \overline{D E} \| \overline{A B}$ (corresponding angles)
11. For each of the following statements, indicate whether it is True or False by circling the corresponding answer. Briefly justify your answer.
(a) (4 points) Let $A B C D$ be a simple quadrilateral. If $A+B=C+D$, then $A B C D$ is a parallelogram. True
(The condition is $B+D=A+C$.)
(b) (4 points) If $\triangle D E F$ is the image of $\triangle A B C$ under a conformal affinity, then their areas must be equal. True
Conformal affinities can scale \mathbb{R}^{2}, changing the ara
(Think: similarity)

