Below you'll find solutions to problems 6.6 and 6.7 , which were listed on your Exam 1 Review sheet. Please let me know if you spot any typos and I'll update things as soon as possible.
6.6, 6.7: The translation in these problems is easy to write a formula for: $\mathcal{T}(X)=X+(-3,-6)$ or, if you prefer, $\mathcal{T}(x, y)=(x-3, y-6)$. The equation for the reflection is trickier. We know $(2,-1) \cdot(x, y)=-3$ is equivalent to $2 x-y=-3$, or $y=2 x+3$. So the slope of the mirror is 2 , and hence the angle it forms with a horizontal line is $\theta=\arctan 2 \approx 63.4^{\circ}$. The y-intercept form of the line makes it clear that $(0,3)$ is on the line. Hence a matrix formula for the reflection across this line is:

$$
\mathcal{M}(X)=\left[\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right]\left([X]-\left[\begin{array}{l}
0 \\
3
\end{array}\right]\right)+\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

Here's a picture of the line:

Using the triangle in the picture, we see that

$$
\begin{aligned}
& \cos 2 \theta=\cos \theta \cos \theta-\sin \theta \sin \theta=\frac{1}{5}-\frac{4}{5}=-\frac{3}{5} \\
& \sin 2 \theta=2 \cos \theta \sin \theta=\frac{4}{5}
\end{aligned}
$$

Hence our formula for the reflection becomes

$$
\mathcal{M}(X)=\left[\begin{array}{cc}
-3 / 5 & 4 / 5 \\
4 / 5 & 3 / 5
\end{array}\right]\left([X]-\left[\begin{array}{l}
0 \\
3
\end{array}\right]\right)+\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

Now consider the two compositions (check the parentheses carefully to make sure you see the differences!):

$$
\begin{aligned}
& \mathcal{T} \circ \mathcal{M}(X)=\left(\left[\begin{array}{cc}
-3 / 5 & 4 / 5 \\
4 / 5 & 3 / 5
\end{array}\right]\left([X]-\left[\begin{array}{l}
0 \\
3
\end{array}\right]\right)+\left[\begin{array}{l}
0 \\
3
\end{array}\right]\right)+\left[\begin{array}{l}
-3 \\
-6
\end{array}\right] \\
& \mathcal{M} \circ \mathcal{T}(X)=\left[\begin{array}{cc}
-3 / 5 & 4 / 5 \\
4 / 5 & 3 / 5
\end{array}\right]\left(\left([X]+\left[\begin{array}{l}
-3 \\
-6
\end{array}\right]\right)-\left[\begin{array}{l}
0 \\
3
\end{array}\right]\right)+\left[\begin{array}{l}
0 \\
3
\end{array}\right]
\end{aligned}
$$

If you distribute across the parenthesis, multiply the constant vectors by the matrix, and collect terms, you'll find that these are both (!) equal to

$$
\left[\begin{array}{cc}
-3 / 5 & 4 / 5 \\
4 / 5 & 3 / 5
\end{array}\right][X]+\left[\begin{array}{l}
-27 / 5 \\
-24 / 5
\end{array}\right]
$$

So with these particular choices, it doesn't matter if you do the reflection first and then the translation, or vice versa; your answers to $\# 6$ and $\# 7$ are the same. (Why does it turn out that way? Hint: $(-3,-6)=-3(1,2)$ could serve as a direction indicator for the line, so the composition in either order gives the same glide reflection!)

