In class we constructed the matrix formula for the reflection across the line $k=\{(3,4)+t(2,1)\}$ - i.e. the line through $P=(3,4)$ with direction indicator $U=(2,1)$. The picture below shows both the line and how to find $\cos \theta, \sin \theta, \cos 2 \theta$ and $\sin 2 \theta$, where θ is the angle formed by k and the horizontal.

Using the formula defined in class (together with the trig values found above),

$$
\begin{aligned}
\mathcal{M}_{k}(X) & =F_{\theta}(X-P)+P \\
& =\left[\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right]\left(X-\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right)+\left[\begin{array}{l}
3 \\
4
\end{array}\right] \\
& =\left[\begin{array}{cc}
3 / 5 & 4 / 5 \\
4 / 5 & -3 / 5
\end{array}\right]\left(X-\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right)+\left[\begin{array}{l}
3 \\
4
\end{array}\right]
\end{aligned}
$$

If we multiply this out, we have:

$$
\begin{aligned}
\mathcal{M}_{k}(X) & =\left[\begin{array}{cc}
3 / 5 & 4 / 5 \\
4 / 5 & -3 / 5
\end{array}\right] X-\left[\begin{array}{cc}
3 / 5 & 4 / 5 \\
4 / 5 & -3 / 5
\end{array}\right]\left[\begin{array}{l}
3 \\
4
\end{array}\right]+\left[\begin{array}{l}
3 \\
4
\end{array}\right] \\
& =\left[\begin{array}{cc}
3 / 5 & 4 / 5 \\
4 / 5 & -3 / 5
\end{array}\right] X-\left[\begin{array}{l}
5 \\
0
\end{array}\right]+\left[\begin{array}{l}
3 \\
4
\end{array}\right] \\
& =\left[\begin{array}{cc}
3 / 5 & 4 / 5 \\
4 / 5 & -3 / 5
\end{array}\right] X+\left[\begin{array}{c}
-2 \\
4
\end{array}\right]
\end{aligned}
$$

$\frac{\text { In class, with } 2: 15 \mathrm{pm} \text { approaching, I quoted }-\left[\begin{array}{l}8 \\ 4\end{array}\right] \text { from memory instead of the correct }+\left[\begin{array}{c}-2 \\ 4\end{array}\right] \text {. Grrr! }}{1}$

We had two calculations:

$$
\begin{aligned}
& \mathcal{M}_{k}\left(\left[\begin{array}{l}
5 \\
0
\end{array}\right]\right)=\left[\begin{array}{cc}
3 / 5 & 4 / 5 \\
4 / 5 & -3 / 5
\end{array}\right]\left[\begin{array}{l}
5 \\
0
\end{array}\right]+\left[\begin{array}{c}
-2 \\
4
\end{array}\right]=\cdots=\left[\begin{array}{l}
1 \\
8
\end{array}\right] \\
& \mathcal{M}_{k}\left(\left[\begin{array}{l}
0 \\
5
\end{array}\right]\right)=\left[\begin{array}{ll}
3 / 5 & 4 / 5 \\
4 / 5 & -3 / 5
\end{array}\right]\left[\begin{array}{l}
0 \\
5
\end{array}\right]+\left[\begin{array}{c}
-2 \\
4
\end{array}\right]=\cdots=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
\end{aligned}
$$

You can check on the picture above that the reflection of $(5,0)$ across k is in fact $(1,8)$, and the reflection of $(0,5)$ is $(2,1)$. One further note: occasionally we might write the vector X in terms of its components x and y, in which case the formula takes the form:

$$
\mathcal{M}_{k}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{cc}
3 / 5 & 4 / 5 \\
4 / 5 & -3 / 5
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{c}
-2 \\
4
\end{array}\right]=\cdots=\left[\begin{array}{c}
\frac{3}{5} x+\frac{4}{5} y-2 \\
\frac{4}{5} x-\frac{3}{5} y+4
\end{array}\right]
$$

Or, writing our vectors out with parentheses instead:

$$
\mathcal{M}_{k}(x, y)=\left(\frac{3}{5} x+\frac{4}{5} y-2, \frac{4}{5} x-\frac{3}{5} y+4\right)
$$

