1.(i) D can be described by $-y_{0} \leq y \leq y_{0}, y^{2} \leq x \leq \sqrt{1-y^{2}}$.
1.(ii) Start with $x=y^{2}=\sqrt{1-y^{2}}$, or $y^{4}=1-y^{2}$. Letting $u=y^{2}$, this is the quadratic equation $u^{2}+u-1$, which has solutions at $u=\frac{-1 \pm \sqrt{5}}{2}$. Solving for y we have $y= \pm \sqrt{\frac{-1 \pm \sqrt{5}}{2}}$. We want the positive real solution, which is $\sqrt{\frac{-1+\sqrt{5}}{2}}$.
1.(iii)
$\iint_{D} x y^{4} d A=\int_{-y_{0}}^{y_{0}} \int_{y^{2}}^{\sqrt{1-y^{2}}} x y^{4} d A=\int_{-y_{0}}^{y_{0}}\left[\frac{x^{2} y^{4}}{2}\right]_{y^{2}}^{x=\sqrt{1-y^{2}}} d A=\int_{-y_{0}}^{y_{0}} \frac{1}{2}\left(y^{4}-y^{6}-y^{8}\right) d A=\frac{y_{0}^{5}}{5}-\frac{y_{0}^{7}}{7}-\frac{y_{0}^{9}}{9}$
2.(i) Set $u=x y$ and $v=x / y$, so $2 \leq u \leq 4$ and $\frac{1}{2} \leq v \leq 3$. Note that $u v=x^{2}$; hence $x=\sqrt{u v}$. Similarly, $y=\sqrt{u / v}$. Hence our transformation is

$$
\begin{aligned}
x=\sqrt{u v} & 2 \leq u \leq 4 \\
y=\sqrt{u / v} & \frac{1}{2} \leq v \leq 3
\end{aligned}
$$

2.(ii) The correct absolute value of the Jacobian for this change of variables is $\frac{1}{2 v}$. Thus our integral becomes

$$
\iint_{D} x^{2} y^{2} d A=\int_{2}^{4} \int_{1 / 2}^{3}(u v) \frac{u}{v} \frac{1}{2 v} d v d u=\int_{2}^{4} \int_{1 / 2}^{3} \frac{u^{2}}{2 v} d v d u=\cdots=\frac{26 \ln 6}{3}
$$

3. By symmetry, $\iint_{D} f d A=2 \iint_{D_{1}} f d A$. Switching to polar coordinates,

$$
2 \iint_{D_{1}}\left[2\left(x^{2}+y^{2}\right)+1\right] d x d y=2 \int_{\pi / 6}^{\pi / 2} \int_{0}^{4} 2 r^{3}+r d r d \theta=\cdots=\frac{272 \pi}{3}
$$

4. This problem is impossible unless you change the order of integration!

$$
\int_{0}^{2} \int_{y^{2}}^{4} y e^{x^{2}} d x d y=\int_{0}^{4} \int_{0}^{\sqrt{x}} y e^{x^{2}} d y d x=\int_{0}^{4} \frac{1}{2} x e^{x^{2}} d x=\cdots=\frac{e^{16}-1}{4}
$$

5. $\int_{-\pi}^{\pi} \sin (y+c) d y=0$ for any constant c. Thus if you set this integral up as $d y d x$, the inner integral evaluates to 0 and the entire answer is zero.
6.(i) The first grid curve is a circle of radius $R / 2$ centered at $(1 / 2,1 / 2, M / 2)$ in the plane $z=M / 2$. The second curve is similar; replace $1 / 2$ with 1 .
6.(ii) S is the slanted cone on the left; ask us for reasons!
