1.(a) Ask us if you're not sure what the pictures look like.
(b) $\int_{0}^{2} \int_{0}^{3-3 z / 2} \int_{0}^{2-2 y / 3-z} f(x, y, z) d x d y d z$
(c) $\int_{0}^{2} \int_{3}^{3-3 z / 2} 2-\frac{2}{3} y-z d y d z$; other answers possible.
2. (a) Again, ask us about the picture. For (b),

$$
V(S)=\iiint_{S} 1 d V=\int_{0}^{2 \pi} \int_{\pi / 4}^{\pi / 3} \int_{0}^{4} \rho^{2} \sin \phi d \rho d \phi d \theta=2 \pi \frac{64}{3} \int_{\pi / 4}^{\pi / 3} \sin \phi d \phi=\cdots=\frac{64 \pi}{3}(\sqrt{2}-1)
$$

3. (i) This is the half cone $z=\sqrt{x^{2}+y^{2}}$ for $0 \leq z \leq 1$.
(ii) $\vec{n}=\vec{r}_{u} \times \vec{r}_{v}=\langle-u \cos v,-u \sin v, u\rangle$, and $\vec{n}(1 / 2, \pi / 2)=\langle 0,-1 / 2,1 / 2\rangle$.
(iii) $A(S)=\int_{0}^{1} \int_{0}^{2 \pi}\left|\vec{r}_{u} \times \vec{r}_{v}\right| d v d u=\cdots=2 \pi \sqrt{2} \int_{0}^{1} u d u=\pi \sqrt{2}$.
4. (a) One possibility is a clockwise half circle.
(b) One possibility is a straight line segment, up the y-axis.
(c) The line integral over the segment on the y-axis is zero; the other part is positive; hence the entire thing is positive.
(d) One possibility is a counter-clockwise circle around the origin.
5. (a) Ask us about the picture.
(b) $\int_{C} \vec{F} \cdot d \vec{r}=\int_{3 \pi / 4}^{7 \pi / 4}\left\langle-\sin ^{2} t, \cos ^{2} t\right\rangle \cdot\langle\sin t,-\cos t\rangle d t=\cdots=-\int_{3 \pi / 4}^{7 \pi / 4} \sin ^{3} t+\cos ^{3} t d t$. This eventually boils down to $-5 \sqrt{2} / 3$.
6. (a) Ask us about the picture
(b) Let $x=u^{3}, y=v^{3}$, and $z=w^{3}$. Then the area expansion factor is simply $27 u^{2} v^{2} w^{2}$. In $u v w$-space, the domain is the tetrahedron in the first octant, cut off by the plane $u+v+w=8$. The integral is

$$
V(S)=\iiint_{S} d V=\int_{0}^{8} \int_{0}^{8-u} \int_{0}^{8-u-v} 27 u^{2} v^{2} w^{2} d w d v d u
$$

