Explain geometrically why each of the following line integrals evaluates to zero.

1. $\int_{C} e^{\arctan \left(x^{4}\right)} y^{3} \cos (2 y) d s$, where $C$ is the straight line segment from $(10,15)$ to $(10,-15)$.
2. $\oint_{C} \frac{x}{x^{2}+y^{2}+1} d x+\frac{y}{x^{2}+y^{2}+1} d y$, where $C$ is the unit circle oriented counterclockwise.
3. $\int_{C}-e^{x y} y d x+e^{x y} x d y$, where $C$ is segment of a line passing through the origin.

For the rest of the review, we will suggest problems from the Chapter Reviews in your textbook.

From Chapter 12 (on page 911):

- 23-28
- 29-34 (Can you do these as double and/or triple integrals?)
- $38,39,40$ (set up), 42, 44 (set up)
- 47,48
- 50

From Chapter 13 (on page 987):

- 1(a)
- 2-10

