$\mathbf{A}:$ Let $f(x, y)=\left(y^{2}, x+y\right), g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ a function such that $\nabla g=\left(\sin \left(x^{2}\right), \cos (x y)\right)$. Let $h=g \circ f$ be the composition of the two functions.

1. Find $\operatorname{Jh}(2,3)$.
2. If $h(2,3)=4$, find the plane tangent to the graph of h at $(2,3)$.

B : Let $f(x, y)=x^{2} y^{3}$.

1. Find $J f(2,3)$.
2. In what direction is f increasing most rapidly at $(2,3)$?
3. Find the equation to the plane tangent to graph of f at $(2,3,72)$.
$\mathbf{C}:$ Let $f(x, y)=e^{y} \sin y$.
4. Find $D_{\mathbf{u}} f(\mathbf{a})$ for $\mathbf{a}=(\pi / 3,0)$ and \mathbf{u} parallel to $(3,-1)$.
5. In what direction does f increase most rapidly at that point?
6. Find the line tangent to $f(x, y)=\sqrt{3} / 2$ at \mathbf{a}.
\mathbf{D} : What polynomials can you add to or subtract from $f(x, y)$ without affecting the value of $\nabla f(2,3)$ or $H f(2,3)$?
