UMTYMP Calculus III Quiz 2 review problems

1. Consider the curve $C=C_{1} \cup C_{2} \cup C_{3}$, where:

- C_{1} goes from the origin to $(0,3,0)$ along a straight line segment.
- C_{2} goes from $(0,3,0)$ to $(0,3,-5)$ along a straight line segment.
- C_{3} goes from $(0,3,-5)$ to $(2,3,-5)$ along a straight line segment.
a) Sketch C_{1}, C_{2} and C_{3} in ${ }^{3}$.
b) Without doing any computations other than addition and multiplication of real numbers, evaluate $\int_{c} y z d x+x d y+y d z$.

2. Explain geometrically why each of the following line integrals evaluates to zero:
a) $\int_{C}^{\arctan \left(x^{4}\right)} y^{3} \cos (2 y) d s$, where C goes from $(10,15)$ to $(10,-15)$ along a straight line segment.
 counterclockwise.
c) $\int_{C}-e^{x y} y d x+e^{x y} x d y$, where C is any line segment that lies on a line passing through the origin.
3. Identify the following sets as connected or disconnected, and as open or not open.
a) $S=\{(x, y) \mid x \geq 0, y \geq 0, x+y \leq 1\}$
b) $T=\{(x, y) \mid x<0$ or $x>3\}$
c) $K=\{(x, y)| | x \mid \geq 1$ or $|y| \geq 1\}$
d) $U=\left\{(x, y) \mid x^{2}+y^{2}<1\right.$ or $\left.(x-3)^{2}+y^{2}<4\right\}$
e) $B=\left\{(x, y) \mid x^{2}+y^{2}<81\right\} \cup\left\{(x, y) \mid x^{2}+y^{2}>81\right\}$
f) $B=\left\{(x, y) \mid 0<(x-3)^{2}+(y+1)^{2}<16\right\}$
4. Which of the connected sets in Exercise 3 are simply-connected?
5. Let $\mathbf{F}=P(x) \mathbf{i}+Q(y) \mathbf{j}$ be a vector field in an open simply- connected region D, and P and Q have continuous first-order partial derivatives. Is \mathbf{F} conservative? If so, find f such that $\mathbf{F}=\nabla f$.
6. Compute $\underset{C}{ }\left((\cos x+1)^{2}+2 y\right) d x+\left((\sin y-1)^{2}-5 x\left(1+\frac{1}{x}\right)\right) d y$, where C is consists of the line segments from $(1,0)$ to $(0,1)$, from $(0,1)$ to $(-1,1)$, from $(-1,1)$ to $(-1,0)$, and the lower half of the unit circle from $(-1,0)$ back to $(1,0)$.
7. If R is the shaded region consisting of the two disks shown below, whose boundary ∂R is oriented as shown, evaluate $\int_{\partial R} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y)=\left(2 x^{2}-3 y\right) \mathbf{i}+\left(5 x+y^{10}\right) \mathbf{i}$.
8. Let R be the top half of the ellipse $x^{2}+\frac{y^{2}}{4}=1$.
a) Find a counterclockwise parameterization of the boundary ∂R of R
b) Compute the double integral $\iint_{R} 3 x^{2} y d A$. Hint: Can you find a vector function $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$ such that $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=3 x^{2} y$?
9. Let C be the line segment from (a, b) to (c, d), where $a<c$ and $b\rangle d$. Compute $I_{1}=\int_{c} e^{-x} d x, I_{2}=\int_{C} e^{-x} d y$ and $I_{3}=\int_{C} e^{-x} d s$. Explain (by thinking about what the integrals actually represent) the signs of I_{1}, I_{2} and I_{3}. Also explain why I_{1} doesn't depend on b and d.
