MATH 4512. Differential Equations with Applications.
Final Exam. May 11, 2016. Problems and Solutions
Problem 1. Let $p(t)$ be a continuous function such that $0<p(t)<1$ for all real t, and let $y(t)$ be a solution of the equation

$$
y^{\prime \prime}+p(t) y=0 .
$$

Suppose that $y\left(t_{1}\right)=y\left(t_{2}\right)=0$ at some points $t_{1}<t_{2}$. Show that $t_{2}-t_{1} \geq \pi$, unless $y(t) \equiv 0$.
Proof. Suppose otherwise, i.e. $y\left(t_{1}\right)=y\left(t_{2}\right)=0$ at some points $t_{1}<t_{2}$ with $0<t_{2}-t_{1}<\pi$.
In a simple case $y \equiv 0$ on (t_{1}, t_{2}), we also have $y^{\prime} \equiv 0$ on $\left(t_{1}, t_{2}\right)$, and by uniqueness of solutions, $y(t)=0$ for all real t.

In the remaining case, when $y(t)$ is not identically 0 , we can assume that $y(t)>0$ at some point $t \in\left(t_{1}, t_{2}\right)$, because otherwise we just replace y by $-y$. Pick a point a such that $\left[t_{1}, t_{2}\right]$ lies strictly inside of $(a, a+\pi)$, so that the function $\sin (t-a)$ is strictly positive on $\left[t_{1}, t_{2}\right]$. Then the function

$$
f(t)=\frac{y(t)}{\sin (t-a)} \quad \text { satisfies } \quad f\left(t_{1}\right)=f\left(t_{2}\right)=0, \quad \text { and } \quad 0<M=\max _{\left[t_{1}, t_{2}\right]} f=f\left(t_{0}\right)
$$

at some point $t_{0} \in\left(t_{1}, t_{2}\right)$. Further, the function

$$
g(t)=y(t)-M \sin (t-a) \leq 0 \quad \text { on } \quad\left[t_{1}, t_{2}\right], \quad \text { and } \quad g\left(t_{0}\right)=0 .
$$

Geometrically, this simply means that we choose an arc of the graph of $M \sin (x-a)$, which touches the graph of $y(t)$ from above at a point $t_{0} \in\left(t_{1}, t_{2}\right)$. Note that

$$
y\left(t_{0}\right)=g\left(t_{0}\right)+M \sin \left(t_{0}-a\right)=M \sin \left(t_{0}-a\right)>0 .
$$

Since $g(t)$ attains its maximum at an interior point t_{0}, we get

$$
0 \geq g^{\prime \prime}\left(t_{0}\right)=y^{\prime \prime}\left(t_{0}\right)+M \sin \left(t_{0}-a\right)=(1-p) y\left(t_{0}\right)>0 .
$$

This contradiction proves that $t_{2}-t_{1} \geq \pi$.
Problem 2. Find the general solution of the equation

$$
(y-1) y^{\prime \prime}=2\left(y^{\prime}\right)^{2}, \quad \text { where } \quad y=y(t) .
$$

Solution. Using substitution $y^{\prime}(t)=z(y)$, we get

$$
y^{\prime \prime}(t)=\frac{d z(y)}{d t}=\frac{d z}{d y} \cdot \frac{d y}{d t}=z^{\prime} z . \quad(y-1) z^{\prime} z=2 z^{2}
$$

A simple case (a) $z \equiv 0$ corresponds to solutions $y=C=$ const. In the remaining case (b) $z \not \equiv 0$, we can cancel both sides by z, which implies

$$
\begin{gathered}
(y-1) \cdot \frac{d z}{d y}=2 z, \quad \frac{d z}{z}=\frac{2 d y}{y-1}, \quad \ln |z|=2 \ln |y-1|+C, \\
\frac{d y}{d t}=z=C_{1}(y-1)^{2}, \quad(y-1)^{-2}=C_{1} d t, \quad(y-1)^{-1}=C_{1} t+C_{2} .
\end{gathered}
$$

In the last equality, we've changed the sign of C_{1}. Finally, we get $y=1+\left(C_{1} t+C_{2}\right)^{-1}$. This is "almost" the final answer, because the case (a) is contained here for $C_{1}=0$, with an exception of $y=1$, which formally corresponds to $C_{2}=\infty$.

Problem 3. Find the general solution of the differential equation

$$
y^{\prime \prime}+4 y^{\prime}+5 y=e^{-2 t} \sin t
$$

Solution. The characteristic equation $\chi(r)=r^{2}+4 r+5=0=(r+2)^{2}+1=0$ has zeros $r_{1,2}=-2 \pm i$. Note that $e^{r_{1} x}=e^{-2 x}(\cos x+i \sin x)$, hence $e^{-2 x} \sin x=\operatorname{Im}\left(e^{r_{1} x}\right)$. Therefore, one can find a particular solution of the given equation in the form $Y=\operatorname{Im} Z$, where Z is a particular solution of

$$
L z=\left(D^{2}+4 D+5\right) z=z^{\prime \prime}+4 z^{\prime}+5 z=e^{r_{1} x}
$$

Since $r_{1}=-2+i$ is a root of multiplicity 1 , one can find Z in the form $Z=A x e^{r_{1} x}$. Using the general formula

$$
\chi(D)\left(e^{r x} f\right)=e^{r x} \chi(D+r) f \quad \text { with } \quad \chi(D)=\left(D-r_{1}\right)\left(D-r_{2}\right)
$$

we get

$$
\begin{aligned}
L Z & =\chi(D)\left(A x e^{r_{1} x}\right)=e^{r_{1} x} \chi\left(D+r_{1}\right)(A x)=e^{r_{1} x} D\left(D+r_{1}-r_{2}\right)(A x)=e^{r_{1} x} \cdot 2 A i \\
A & =\frac{1}{2 i}=-\frac{i}{2}, \quad Z=-\frac{i}{2} \cdot x e^{r_{1} x}=\frac{1}{2} \cdot x e^{-2 x}(\sin x-i \cos x), \quad Y=\operatorname{Im} Z=-\frac{1}{2} \cdot x e^{-2 x} \cos x
\end{aligned}
$$

Finally, general solution

$$
y(x)=e^{-2 x}\left(C_{1} \cos x+C_{2} \sin x\right)-\frac{1}{2} \cdot x e^{-2 x} \cos x
$$

Problem 4. Use Laplace transforms to solve the equation

$$
y^{\prime \prime}+y=\sin t+(\sin t) * y(t), \quad \text { where } \quad(\sin t) * y(t)=\int_{0}^{t} \sin (t-\tau) y(\tau) d \tau
$$

with the initial conditions $y(0)=0, y^{\prime}(0)=1$.
Solution. Denote $Y(s)=\mathcal{L}\{y\}$ - the Laplace transform of $y(t)$. Using the equalities

$$
\mathcal{L}\{f * g\}=\mathcal{L}\{f\} \cdot \mathcal{L}\{g\}, \quad \mathcal{L}\{\sin t\}=\frac{1}{s^{2}+1}, \quad \mathcal{L}\left\{y^{\prime \prime}\right\}=s \mathcal{L}\{y\}-s y(0)-y^{\prime}(0)
$$

we derive

$$
\left(s^{2}+1\right) Y(s)-1=\frac{1}{s^{2}+1}+\frac{1}{s^{2}+1} \cdot Y(s)
$$

This equality can be simplified as follows:

$$
\left[\left(s^{2}+1\right)^{2}-1\right] Y(s)=s^{2}+2, \quad\left(s^{4}+2 s^{2}\right) Y(s)=s^{2}+2, \quad Y(s)=s^{-2}
$$

which corresponds to $y(t)=t$.

Problem 5. Find the general solution of the system

$$
\frac{d x_{1}}{d t}=x_{2}+\tan ^{2} t-1, \quad \frac{d x_{2}}{d t}=-x_{1}+\tan t .
$$

Solution. Differentiate the second equality and substitute x_{1}^{\prime} from the first equality:

$$
x_{2}^{\prime \prime}=\left(-x_{1}+\tan t\right)^{\prime}=-x_{1}^{\prime}+\frac{1}{\cos ^{2} t}=-x_{2}-\tan ^{2} t+1+\frac{1}{\cos ^{2} t}=-x_{2}+2 .
$$

The general solution of $x_{2}^{\prime \prime}+x_{2}=2$ is $x_{2}=C_{1} \cos t+C_{2} \sin t+2$.
Finally, $x_{1}=-x_{2}^{\prime}+\tan t=C_{1} \sin t-C_{2} \cos t+\tan t$.
Problem 6. If $A=\left(\begin{array}{ll}5 & 8 \\ 2 & 5\end{array}\right)$, find
(a) the inverse matrix A^{-1};
(b) the eigenvalues and eigenvectors of A;
(c) the matrix function $e^{t A}$.

Solution. (a). We have

$$
\operatorname{det} A=25-16=9, \quad \text { and } \quad A^{-1}=\frac{1}{\operatorname{det} A}\left(\begin{array}{rr}
5 & -8 \\
-2 & 5
\end{array}\right)=\left(\begin{array}{rr}
5 / 9 & -8 / 9 \\
-2 / 9 & 5 / 9
\end{array}\right) .
$$

(b). The eigenvalues of A are roots of the characteristic equation

$$
\chi(\lambda)=\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\begin{array}{rr}
\lambda-5 & -8 \\
-2 & \lambda-5
\end{array}\right)=\lambda^{2}-10 \lambda+9=(\lambda-1)(\lambda-9),
$$

i.e. $\lambda_{1}=1, \lambda_{2}=9$. The corresponding eigenvectors are nonzero solutions of systems $(\lambda I-A) v=0$:

$$
\lambda_{1}=1 \quad \text { corresponds to } \quad v_{1}=\binom{2}{-1}, \quad \lambda_{2}=9 \quad \text { corresponds to } \quad v_{2}=\binom{2}{1} .
$$

(c). A fundamental matrix Ψ with columns $e^{\lambda_{1} t} v_{1}$ and $e^{\lambda_{2} t} v_{2}$ satisfies the matrix equation $\Psi^{\prime}=A \Psi$. The exponential matrix

$$
\begin{aligned}
e^{t A}=\Psi(t) \cdot \Psi(0)^{-1} & =\left(\begin{array}{rr}
2 e^{t} & 2 e^{9 t} \\
-e^{t} & e^{9 t}
\end{array}\right) \cdot\left(\begin{array}{rr}
2 & 2 \\
-1 & 1
\end{array}\right)^{-1}=\frac{1}{4} \cdot\left(\begin{array}{cc}
2 e^{t} & 2 e^{9 t} \\
-e^{t} & e^{9 t}
\end{array}\right) \cdot\left(\begin{array}{rr}
1 & -2 \\
1 & 2
\end{array}\right) \\
& =\frac{1}{4} \cdot\left[e^{t}\left(\begin{array}{rr}
2 & -4 \\
-1 & 2
\end{array}\right)+e^{9 t}\left(\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right)\right] .
\end{aligned}
$$

