MATH 4512. Differential Equations with Applications. Midterm Exam \#2. April 6, 2016. Problems and Solutions.

1. Verify whether of not the functions

$$
f_{1}(t)=t, \quad f_{2}(t)=e^{t}, \quad f_{3}(t)=\ln t, \quad \text { and } \quad f_{4}(t)=\tan t
$$

are linearly independent on $(0, \pi / 2)$.
Solution. Suppose that

$$
c_{1} t+c_{2} e^{t}+c_{3} \ln t+c_{4} \tan t \equiv 0 \quad \text { on } \quad(0, \pi / 2) \quad \text { with some constants } \quad c_{1}, c_{2}, c_{3}, c_{4} .
$$

By considering limits as $t \rightarrow \pi / 2$, and then $t \rightarrow 0$, we see that $c_{4}=c_{3}=0$. Now we have $c_{1} t+c_{2} e^{t} \equiv 0$. Differentiating this equality twice, we get $c_{2}=0$, and finally, $c_{1}=0$. This means that the given functions are linearly independent.
2. Find a particular solution to the equation

$$
L y=t^{2} y^{\prime \prime}-t y^{\prime}+y=4 t \cdot \ln t \quad \text { for } \quad t>0
$$

given that $y_{1}(t)=t$ and $y_{2}(t)=t \cdot \ln t$ are linearly independent solutions to the homogeneous equation $L y=0$.

Solution. The general solution has the form $y=c_{1} y_{1}+c_{2} y_{2}+Y$. Here a particular solution Y can be found by the method of of variation of parameters in the form $Y=u_{1} y_{1}+u_{2} y_{2}$, where

$$
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0, \quad u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=4 t^{-1} \ln t .
$$

Here the right hand side is $4 t \ln t$ divided by t^{2} - the coefficient of $y^{\prime \prime}$. After a minor simplification, we rewrite this system in the form

$$
u_{1}^{\prime}+u_{2}^{\prime} \ln t=0, \quad u_{1}^{\prime}+u_{2}^{\prime}(1+\ln t)=4 t^{-1} \ln t
$$

Subtracting both sides of the first equation from the second one, we get:

$$
u_{2}^{\prime}=4 t^{-1} \ln t, \quad u_{1}^{\prime}=-4 t^{-1}(\ln t)^{2} .
$$

Both u_{1} and u_{2} are obtained by integration with substitution $u=\ln t, d u=t^{-1} d t$. We do not need to add the constants of integration, because eventually they will be added to the constants c_{1} and c_{2} in $y=c_{1} y_{1}+c_{2} y_{2}+Y$. Then

$$
\begin{aligned}
u_{1} & =-4 \int \frac{(\ln t)^{2}}{t} d t=-\frac{4}{3}(\ln t)^{3}, \quad u_{2}=4 \int \frac{\ln t}{t} d t=2(\ln t)^{2}, \\
Y & =u_{1} y_{1}+u_{2} y_{2}=-\frac{4 t}{3}(\ln t)^{3}+2 t(\ln t)^{3}=\frac{2 t}{3}(\ln t)^{3} .
\end{aligned}
$$

Finally, the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}+Y=\left(c_{1}+c_{2} \ln t\right) t+\frac{2 t}{3}(\ln t)^{3} .
$$

3. Find the general solution of the equation

$$
y^{\prime \prime \prime}-9 y^{\prime \prime}+25 y^{\prime}-17 y=0 .
$$

Solution. The characteristic equation $\chi(r)=r^{3}-9 r^{2}+25 r-17=0$ has a root $r_{1}=1$. We can rewrite it in the form

$$
\chi(r)=(r-1)\left(r^{2}-8 r+17\right)=(r-1)\left[(r-4)^{2}+1\right]=0,
$$

so that the remaining two root $r_{2,3}=4 \pm i$. Correspondingly, the general solution is

$$
y=c_{1} e^{t}+e^{4 t}\left(c_{2} \cos t+c_{3} \sin t\right)
$$

4. Find the general solution of the equation

$$
y^{\prime \prime}+y=4(t-1) \cos t
$$

Solution. The characteristic equation $r^{2}+1=0$ has roots $r_{1,2}= \pm i$, and the general solution

$$
y=c_{1} \cos t+c_{2} \sin t+Y, \quad \text { where } \quad\left(D^{2}+1\right) Y=Y^{\prime \prime}+Y=4(t-1) \cos t .
$$

Having in mind that $e^{i t}=\cos t+i \sin t$, we can find Y as the real part of a complex solution of $\left(D^{2}+1\right) Z=4(t-1) e^{i t}$. Since i is one of roots $r_{1,2}$, we have $Z=e^{i t} t(A t+B)$ with some constants A and B. Then

$$
\left(D^{2}+1\right) Z=e^{i t}\left[(D+i)^{2}+1\right]\left(A t^{2}+B t\right)=e^{i t}\left(D^{2}+2 i D\right)\left(A t^{2}+B t\right)=e^{i t}(4 t-4) .
$$

Comparing the coefficients in both sides of $\left(D^{2}+2 i D\right)\left(A t^{2}+B t\right)=4 t-4$, we get

$$
4 i A=4, \quad 2 A+2 i B=-4, \quad \text { so that } \quad A=-i, \quad B=1+2 i
$$

and

$$
Y=\operatorname{Re}[t(-i t+1+2 i)(\cos t+i \sin t)]=t \cdot[\cos t+(t-2) \sin t] .
$$

