## Appendix A. Compactness in Metric Spaces.

In the textbook by Walter Rudin, Principles of Mathematical Analysis, 3rd edition, 1976, the compactness is defined by the following Heine-Borel property: A subset $K$ in a metric space $X$ is compact, if

$$
K \subset \bigcup_{\alpha} G_{\alpha} \text { with open } \quad G_{\alpha} \quad \Longrightarrow \quad K \subset \bigcup_{j=1}^{n} G_{\alpha_{j}} \quad \text { for some finite subfamily of } \quad\left\{G_{\alpha}\right\} .
$$

Theorem A1. The Heine-Borel property is equivalent to the following Weierstrass property: every infinite subset $E \subset K$ has a limit point in $K$.

Proof. The Weierstrass property follows from the Heine-Borel property by Theorem 2.37 in the textbook. It suffices to show that if the Heine-Borel property fails, then the Weierstrass property fails as well. Therefore, suppose that

$$
K \subset \bigcup_{\alpha} G_{\alpha} \quad \text { with open } \quad G_{\alpha} \quad \text { without a finite subcover. }
$$

Since $Q_{\alpha}$ are open,

$$
\forall p \in K, \quad \exists r(p) \in\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, \ldots\right\} \quad \text { such that } \quad p \in B_{r(p)}(p) \subset G_{\alpha} \quad \text { for some } \quad \alpha .
$$

Pick $p_{1} \in K$ with the maximal possible $r\left(p_{1}\right)$, and then by induction, for $k=2,3, \ldots$,

$$
p_{k} \in K \backslash\left(\bigcup_{j=1}^{k-1} B_{r\left(p_{j}\right)}\left(p_{j}\right)\right)
$$

with the maximal possible $r\left(p_{k}\right)$. The subset $E:=\left\{p_{1}, p_{2}, \ldots, p_{n}, \ldots\right\} \subset K$ is infinite, because otherwise $\left\{B_{r\left(p_{j}\right)}\left(p_{j}\right) \subset G_{\alpha_{j}}\right\}$ would be a finite subcover of $K$, and correspondingly, $\left\{G_{\alpha_{j}}\right\}$ would also be a finite subcover of $K$.

We claim that the set $E$ has no limit point. Suppose otherwise: let $p_{0} \in K$ be a limit point of $E$. Consider two possible cases.
(i) $p_{0} \in B_{r\left(p_{k}\right)}\left(p_{k}\right)$ for some $k$. Since all these balls are open, we have $p_{0} \in B_{\varepsilon}\left(p_{0}\right) \subset B_{r\left(p_{k}\right)}\left(p_{k}\right)$ for some $\varepsilon>0$. By constructions, all the point $p_{j}$ with $j \geq k+1$ lie outside of $B_{r\left(p_{k}\right)}\left(p_{k}\right)$, hence $B_{\varepsilon}\left(p_{0}\right)$ can only contain a finite number of point $p_{j}$, and by Theorem 2.20 , $p_{0}$ cannot be a limit point of $E$.
(ii) $p_{0} \notin B_{r\left(p_{k}\right)}\left(p_{k}\right)$ for all $k$. Once again by construction, we must have $0<r\left(p_{0}\right) \leq r\left(p_{k}\right)$ for all $k$. Then $d\left(p_{0}, p_{k}\right) \geq r\left(p_{k}\right) \geq r\left(p_{0}\right)>0$, i.e. $p_{k} \notin B_{r\left(p_{0}\right)}\left(p_{0}\right)$ for all $k$, and $p_{0}$ is not a limit point of $E$.

In any case, the Weierstrass property fails for the infinite set $E$, which completes the proof.
This theorem can be re-formulated in the following form. In one direction, this statement is contained in Theorem 3.6(a) in the textbook.

Theorem A2. A subset $K$ of a metric space $(X, d)$ is compact if and only if every sequence $\left\{p_{n}\right\} \subset K$ contains a convergent subsequence in $K$.

We give one more convenient criterion of compactness.
Definition A3. A subset $E$ of a metric space $(X, d)$ is totally bounded if $\forall \varepsilon>0$, there exists a finite subset $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \subset E$ such that

$$
E \subset \bigcup_{j=1}^{n} B_{\varepsilon}\left(p_{j}\right) .
$$

Theorem A4. A subset $K$ of a metric space $(X, d)$ is compact if and only if it is (i) complete and (ii) totally bounded.

Proof. Let $K$ be a compact subset of $X$. The completeness of $K$ is contained in Theorem 3.11(b) in the textbook. Alternatively, one can use the above Theorem A1 in the following way. Let $\left\{p_{n}\right\}$ be a Cauchy sequence in $K$. If the set $E:=\left\{p_{n}\right\} \subset K$ is finite, then we obviously have $p=p_{n_{1}}=p_{n_{2}}=\cdots$ for some sequence of natural indices $n_{1}<n_{2}<\cdots$. In this case trivially $p_{n_{j}} \rightarrow p$ as $j \rightarrow \infty$. If the set $E$ is infinite, then by Theorem A1 it has a limit point $p \in K$. By Theorem 3.2(d), the set $E$ contains a convergent subsequence $p_{n_{j}} \rightarrow p \in K$ as $j \rightarrow \infty$, so that this property holds true in any case. Next, since $\left\{p_{n}\right\}$ is a Cauchy sequence, $\forall \varepsilon>0, \exists N=N(\varepsilon)>0$ such that $d\left(p_{n}, p_{m}\right)<\varepsilon$ for all $m, n \geq N$. Then

$$
d\left(p_{n}, p\right) \leq d\left(p_{n}, p_{n_{j}}\right)+d\left(p_{n_{j}}, p\right)<\varepsilon+d\left(p_{n_{j}}, p\right), \quad \forall n, n_{j} \geq N .
$$

By taking limit as $j \rightarrow \infty$, we get $d\left(p_{n}, p\right) \leq \varepsilon, \forall n \geq N$. This implies that $\left\{p_{n}\right\}$ converges to $p$, so that $K$ is complete.

Compact sets $K$ must be totally bounded, because otherwise we get infinite set $E:=\left\{p_{n}\right\} \subset K$ with $d\left(p_{j}, p_{k}\right) \geq \varepsilon>0, \forall j \neq k$. Then $E^{\prime}$ is empty, in contradiction to Theorem A1.

Now suppose that $K$ is complete and totally bounded, and let $E$ be an infinite subset of $K$. Starting from $E_{0}:=E$ and using total boundedness, we can define a decreasing sequence of infinite sets

$$
E_{n}:=E_{n-1} \cap B_{1 / n}\left(p_{n}\right) \quad \text { for some distinct points } \quad p_{n} \in K, \quad n=1,2, \ldots
$$

By this construction, we have

$$
d\left(p_{m}, p_{n}\right)<\frac{1}{n}, \quad \forall m>n .
$$

This implies that $\left\{p_{n}\right\}$ is a Cauchy sequence. By completeness, $p_{n} \rightarrow p \in E^{\prime}$, so that $E^{\prime}$ is nonempty. By Theorem A1, the subset $K$ is compact in $(X, d)$.

