
Appendix A. Compactness in Metric Spaces.

In the textbook by Walter Rudin, Principles of Mathematical Analysis, 3rd edition, 1976,
the compactness is defined by the following Heine-Borel property: A subset K in a metric space
X is compact, if

K ⊂
∪
α

Gα with open Gα =⇒ K ⊂
n∪

j=1

Gαj
for some finite subfamily of {Gα}.

Theorem A1. The Heine-Borel property is equivalent to the following Weierstrass property:
every infinite subset E ⊂ K has a limit point in K.

Proof. The Weierstrass property follows from the Heine-Borel property by Theorem 2.37 in the
textbook. It suffices to show that if the Heine-Borel property fails, then the Weierstrass property
fails as well. Therefore, suppose that

K ⊂
∪
α

Gα with open Gα without a finite subcover.

Since Qα are open,

∀p ∈ K, ∃r(p) ∈
{
1,

1

2
,
1

3
, . . . ,

1

n
, . . .

}
such that p ∈ Br(p)(p) ⊂ Gα for some α.

Pick p1 ∈ K with the maximal possible r(p1), and then by induction, for k = 2, 3, . . .,

pk ∈ K \
( k−1∪

j=1

Br(pj)(pj)

)
with the maximal possible r(pk). The subset E := {p1, p2, . . . , pn, . . . } ⊂ K is infinite, because
otherwise

{
Br(pj)(pj) ⊂ Gαj

}
would be a finite subcover of K, and correspondingly,

{
Gαj

}
would

also be a finite subcover of K.

We claim that the set E has no limit point. Suppose otherwise: let p0 ∈ K be a limit point of
E. Consider two possible cases.

(i) p0 ∈ Br(pk)(pk) for some k. Since all these balls are open, we have p0 ∈ Bε(p0) ⊂ Br(pk)(pk)
for some ε > 0. By constructions, all the point pj with j ≥ k + 1 lie outside of Br(pk)(pk) , hence
Bε(p0) can only contain a finite number of point pj , and by Theorem 2.20, p0 cannot be a limit
point of E.

(ii) p0 /∈ Br(pk)(pk) for all k. Once again by construction, we must have 0 < r(p0) ≤ r(pk) for
all k. Then d(p0, pk) ≥ r(pk) ≥ r(p0) > 0 , i.e. pk /∈ Br(p0)(p0) for all k, and p0 is not a limit
point of E.

In any case, the Weierstrass property fails for the infinite set E, which completes the proof. 2

This theorem can be re-formulated in the following form. In one direction, this statement is
contained in Theorem 3.6(a) in the textbook.

Theorem A2. A subset K of a metric space (X, d) is compact if and only if every sequence
{pn} ⊂ K contains a convergent subsequence in K.
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We give one more convenient criterion of compactness.

Definition A3. A subset E of a metric space (X, d) is totally bounded if ∀ε > 0, there
exists a finite subset {p1, p2, . . . , pn} ⊂ E such that

E ⊂
n∪

j=1

Bε(pj).

Theorem A4. A subset K of a metric space (X, d) is compact if and only if it is (i) complete
and (ii) totally bounded.

Proof. Let K be a compact subset of X. The completeness of K is contained in Theorem
3.11(b) in the textbook. Alternatively, one can use the above Theorem A1 in the following way.
Let {pn} be a Cauchy sequence in K. If the set E := {pn} ⊂ K is finite, then we obviously have
p = pn1 = pn2 = · · · for some sequence of natural indices n1 < n2 < · · · . In this case trivially
pnj

→ p as j → ∞. If the set E is infinite, then by Theorem A1 it has a limit point p ∈ K. By
Theorem 3.2(d), the set E contains a convergent subsequence pnj

→ p ∈ K as j → ∞, so that this
property holds true in any case. Next, since {pn} is a Cauchy sequence, ∀ε > 0, ∃N = N(ε) > 0
such that d(pn, pm) < ε for all m,n ≥ N . Then

d(pn, p) ≤ d(pn, pnj
) + d(pnj

, p) < ε+ d(pnj
, p), ∀n, nj ≥ N.

By taking limit as j → ∞, we get d(pn, p) ≤ ε, ∀n ≥ N . This implies that {pn} converges to p,
so that K is complete.

Compact sets K must be totally bounded, because otherwise we get infinite set E := {pn} ⊂ K
with d(pj, pk) ≥ ε > 0, ∀j ̸= k. Then E ′ is empty, in contradiction to Theorem A1.

Now suppose that K is complete and totally bounded, and let E be an infinite subset of K.
Starting from E0 := E and using total boundedness, we can define a decreasing sequence of infinite
sets

En := En−1 ∩B1/n(pn) for some distinct points pn ∈ K, n = 1, 2, . . . .

By this construction, we have

d(pm, pn) <
1

n
, ∀m > n.

This implies that {pn} is a Cauchy sequence. By completeness, pn → p ∈ E ′, so that E ′ is nonempty.
By Theorem A1, the subset K is compact in (X, d). 2
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