Math 8602: REAL ANALYSIS. Spring 2016

Homework \#5 (corrected, due on Wednesday, April 20).
40 points are divided between 4 problems, 10 points each.
\#1. Let f be a function in $L^{1}\left(\mathbb{R}^{1}\right)$. Show that

$$
\int_{\mathbb{R}^{1}} f(x) \sin (\omega x) d x \rightarrow 0 \quad \text { as } \quad \omega \rightarrow \infty
$$

\#2. Let $f(x) \in L_{l o c}^{1}(\mathbb{R})$ and

$$
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2} \quad \text { for all } \quad x, y \in \mathbb{R}
$$

Show that f is convex on \mathbb{R}.
\#3. Show that

$$
H_{n}(x):=(-1)^{n} e^{x^{2}}\left(e^{-x^{2}}\right)^{(n)}
$$

are polynomials of degree n (the Hermite polynomials) satisfying

$$
\int_{-\infty}^{\infty} e^{-x^{2}} H_{k} H_{n} d x=0 \quad \text { for } \quad k \neq n
$$

Derive the equality

$$
F(t, x):=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} \cdot H_{n}(x)=e^{2 t x-t^{2}}
$$

Remark. One can show that $y=H_{n}$ satisfies the Hermite equation $y^{\prime \prime}-2 x y^{\prime}+2 n y=0$. In a similar way, the Laguerre polynomials

$$
L_{n}(x):=\frac{e^{x}}{n!} \cdot\left(e^{-x} x^{n}\right)^{(n)} \quad \text { satisfy } \quad \int_{0}^{\infty} e^{-x} L_{k} L_{n} d x=0 \quad \text { for } \quad k \neq n
$$

and $y=L_{n}$ satisfies the Laguerre equation $x y^{\prime \prime}+(1-x) y^{\prime}+n y=0$.
\#4. Let $\left\{x_{n}\right\}$ be a sequence in a Hilbert space \mathcal{H} such that $\left\|x_{n}\right\| \leq 1$ for all n, and for each $y \in \mathcal{H}$, we have $\left(x_{n}, y\right) \rightarrow 0$ as $n \rightarrow \infty$. Show that there is a subsequence $\left\{x_{n_{j}}\right\}$ such that

$$
\frac{1}{k}\left(x_{n_{1}}+\cdots+x_{n_{k}}\right) \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
$$

