Math 8602: REAL ANALYSIS. Spring 2016

Homework \#2. Problems and Solutions.

\#1. Let a functions $f \in B V([a, b])$ for every subinterval $[a, b] \subset(0,1)$, and its variation on $[a, b]$ does not exceed a constant $C_{0}<\infty$ which does not depend on a, b. Show that there exists

$$
\lim _{a \searrow 0} f(a) .
$$

Proof. Suppose that this limit does not exist. Then

$$
M:=\limsup _{a \searrow 0} f(a)>m:=\liminf _{a \searrow 0} f(a) .
$$

Fix m_{0} and M_{0} satisfying $m<m_{0}<M_{0}<M$. Then there are sequences $a_{j}, b_{j} \in(0,1)$ such that
$1>b_{1}>a_{1}>b_{2}>a_{2}>\cdots>b_{k}>a_{k}>\cdots, \quad$ and $\quad f\left(b_{j}\right)>M_{0}, f\left(a_{j}\right)<m_{0}$ for all j. The total variation of f on $\left[a_{k}, b_{1}\right]$,

$$
T_{f}\left(b_{1}\right)-T_{f}\left(a_{k}\right) \geq \sum_{j=1}^{k}\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right| \geq k \cdot\left(M_{0}-m_{0}\right) \rightarrow \infty \quad \text { as } \quad k \rightarrow \infty
$$

in contradiction to our assumption. Therefore, we must have $M=m$, which means that the corresponding limit exists.
\#2. Show that for all $\alpha>1$ the functions

$$
f_{\alpha}(x):=\sum_{k=1}^{\infty} \frac{\sin \left(2^{k} x\right)}{2^{k \alpha}} \in B V([0, \pi]),
$$

i.e. they have bounded variation on $[0, \pi]$.

Proof. The variation of f_{α} on $[0, \pi]$,

$$
\begin{gathered}
V_{0}^{\pi}\left[f_{\alpha}\right] \leq \sum_{k=1}^{\infty} V_{0}^{\pi}\left[2^{-k \alpha} \sin \left(2^{k} \alpha\right)\right] \leq \sum_{k=1}^{\infty} \int_{0}^{\pi} 2^{-k \alpha}\left|\frac{d}{d x} \sin \left(2^{k} x\right)\right| d x \\
\leq \sum_{k=1}^{\infty} \int_{0}^{\pi} 2^{k(1-\alpha)} d x=\pi \sum_{k=1}^{\infty} 2^{k(1-\alpha)}<\infty
\end{gathered}
$$

for $\alpha>1$, i.e. $f_{\alpha} \in B V([0, \pi])$.
\#3. Let constants $\alpha, \beta \in(0,1)$ with $\alpha+\beta>1$, and let functions f, g satisfy

$$
[f]_{\alpha}:=\sup _{x \neq y} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}<\infty, \quad[g]_{\beta}:=\sup _{x \neq y} \frac{|g(x)-g(y)|}{|x-y|^{\beta}}<\infty .
$$

Show that there exists

$$
\lim _{n \rightarrow \infty} S_{n}, \quad \text { where } \quad S_{n}:=\sum_{j=1}^{2^{n}} f\left(2^{-n} j\right)\left[g\left(2^{-n} j\right)-g\left(2^{-n}(j-1)\right)\right]
$$

Proof. We rewrite S_{n} in the form

$$
S_{n}=\sum_{j=1}^{2^{n}} A_{j} B_{j}, \quad \text { where } \quad A_{j}:=f\left(2^{-n} j\right), \quad B_{j}:=g\left(2^{-n} j\right)-g\left(2^{-n}(j-1)\right)
$$

Compare this sum with

$$
S_{n+1}=\sum_{j=1}^{2^{n+1}} a_{j} b_{j}=\sum_{j=1}^{2^{n}}\left(a_{2 j-1} b_{2 j-1}+a_{2 j} b_{2 j}\right) .
$$

The expressions for a, b are similar to those for A, B, with $n+1$ in place of n. Note that $A_{j}=a_{2 j}$ and $B_{j}=b_{2 j-1}+b_{2 j}$. Therefore,

$$
S_{n+1}-S_{n}=\sum_{j=1}^{2^{n}}\left(a_{2 j-1}-a_{2 j}\right) b_{2 j-1}
$$

By definition of $[f]_{\alpha}$ and $[g]_{\beta}$,

$$
\left|a_{2 j-1}-a_{2 j}\right|=\left|f\left(2^{-n-1}(2 j-1)\right)-f\left(2^{-n} j\right)\right| \leq[f]_{\alpha} \cdot\left(2^{-n-1}\right)^{\alpha}, \quad\left|b_{2 j-1}\right| \leq[g]_{\beta} \cdot\left(2^{-n-1}\right)^{\beta}
$$

Hence

$$
\left|S_{n+1}-S_{n}\right| \leq 2^{n} \cdot[f]_{\alpha} \cdot[g]_{\beta} \cdot\left(2^{-n-1}\right)^{\alpha+\beta} \leq[f]_{\alpha} \cdot[g]_{\beta} \cdot 2^{-n(\alpha+\beta-1)}
$$

Since $\alpha+\beta>1$, the series $\sum\left|S_{n+1}-S_{n}\right|<\infty$, and there exists

$$
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left[S_{1}+\sum_{j=1}^{n-1}\left(S_{j+1}-S_{j}\right)\right] .
$$

\#4 (Jensen's Inequality, \#42d, p.109). Let (X, \mathcal{M}, μ) be a measure space with $\mu(X)=1$, and let g be a function in $L^{1}(\mu)$. Show that for any convex function F on \mathbb{R}^{1}, we have

$$
F\left(\int_{X} g d \mu\right) \leq \int_{X} F(g) d \mu
$$

Hint. You can use without prove the fact that any convex function can be represented as an upper bound of linear functions:

$$
F(u)=\sup _{\alpha \in A}\left(k_{\alpha} u+b_{\alpha}\right) .
$$

Proof. For each $\alpha \in A$, we have

$$
k_{\alpha} \int_{X} g d \mu+b_{\alpha}=\int_{X}\left(k_{\alpha} u+b_{\alpha}\right) d \mu \leq \int_{X} F(g) d \mu
$$

Using the above representation with $u:=\int_{X} g d \mu$, we obtain the desired inequality.

