Math 8602: REAL ANALYSIS. Spring 2016

Homework #1. Problems and Solutions.

#1. Show that the function

$$f(x) = \sum_{k=1}^{\infty} \frac{\sin(4^k x)}{2^k}$$

is continuous on \mathbb{R}^1 , but its total variation $V[f; a, b] = \infty$ for any a < b.

Proof. The function f is continuous as the uniform limit of continuous functions:

$$f(x) = \lim_{n \to \infty} S_n(x)$$
, where $S_n(x) := \sum_{k=1}^n 2^{-k} \sin(4^k x)$.

Further, we fix a < b and an interval $I \subset (a, b)$ of length $l = 4^{-n} \cdot 2\pi$. Note that the function

$$f_n(x) := \sum_{k=n}^{\infty} 2^{-k} \sin(4^k x) \quad \text{is} \quad l\text{-periodic}, \quad \text{i.e.} \quad f_n(x+l) \equiv f_n(x).$$

Since $f = S_{n-1} + f_n$, where S_{n-1} is a smooth function, it suffices to show that

 $V := V[f_n; I] :=$ (the total variation of f_n on I) $= \infty$.

Suppose otherwise, i.e. $V < \infty$, and let μ_n be a signed measure on I which corresponds to f_n according to Theorem 3.29. Then for integers $m \ge n$,

$$V = |\mu_n| (I) \ge \int_{I} |\cos(4^m x)| d|\mu_n| \ge \int_{I} \cos(4^m x) d\mu_n =: \int_{I} \cos(4^m x) df_n.$$

Since both f_n and $\cos(4^m x)$ are *l*-periodic, using integration by parts (Theorem 3.36), we see that the boundary terms cancel, hence

$$V \ge -\int_{I} f_n d\cos(4^m x) = 4^m \int_{I} f_n \sin(4^m x) dx$$

Further, for $k, m \ge n$, we have

$$\sin(4^k x) \cdot \sin(4^m x) = \frac{1}{2} \left[\cos(4^k - 4^m) x - \cos(4^k + 4^m) x \right]$$

By periodicity, the integrals of these expressions over I are zeros for $k \neq m$. Therefore,

$$V \ge 4^m \sum_{k=n}^{\infty} 2^{-k} \int_{I} \sin(4^k x) \cdot \sin(4^m x) \, dx = 2^m \int_{I} \sin^2(4^m x) \, dx = 2^{m-1} l = 2^m \cdot \pi 4^{-n}.$$

For large m, we have a contradiction with the assumption $V < \infty$. Therefore, $V = \infty$.

#2. (Problem 36 on p. 127). Let X be the set of all real-valued Lebesgue measurable functions f on [0,1] satisfying the inequality $|f| \leq 1$. Show that there is NO topology \mathcal{T} on X such that $f_n \to 0$ a.e. as $n \to \infty$ if and only if it converges with respect to \mathcal{T} .

Proof. Suppose there is such a topology \mathcal{T} . Let G be an open set $(G \in \mathcal{T})$ containing the function $f \equiv 0$. We claim that

$$\exists \varepsilon > 0 \quad \text{such that from} \quad g \in X \quad \text{and} \quad ||g||_1 := \int_0^1 |g(x)| \, dx < \varepsilon \quad \text{it follows} \quad g \in G. \tag{1}$$

Indeed, otherwise we have: $\forall n \in \mathbb{N}$, $\exists g_n \notin G$ with $||g_n||_1 < 1/n$. By Theorem 2.30, \exists a subsequence $g_{n_j} \to 0$ a.e. By our assumption, $g_{n_j} \to 0$ with respect to \mathcal{T} , which implies that $g_{n_j} \in G$ for large enough j. However, $g_n \notin G$ for all n. This contradiction proves (1).

Now take a sequence $f_n \in X$ such that $||f_n||_1 \to 0$, but f_n does not converge to 0 a.e. For example, one can take f_n from iv on p. 61. From (1) it follows that for an arbitrary open set G containing $f \equiv 0$, there exists n_0 such that $f_n \in G, \forall n \geq n_0$. This means that $f_n \to 0$ with respect to \mathcal{T} . Since f_n does not converge to 0 a.e., these two kinds of convergence are not equivalent.

#3. Let f be a real valued continuous function on \mathbb{R}^1 such that $f(x) \equiv 0$ for $|x| \ge 2$. Show that

$$f^{(\varepsilon)}(x) := \int_{\mathbb{R}^1} f(x - \varepsilon y) \varphi(y) dy \to f(x) \text{ as } \varepsilon \searrow 0$$

uniformly on \mathbb{R}^1 , where

$$\varphi(y) := \frac{1}{\sqrt{\pi}} \cdot e^{-y^2}$$

Proof. Since f is continuous on [-2, 2], it is bounded: $|f| \le M = \text{const} < \infty$, and uniformly continuous:

$$\omega(\rho):=\sup_{|x-y|\leq \delta} |f(x)-f(y)|\to 0 \quad \text{as} \quad \delta\searrow 0.$$

For an arbitrary constant A > 0, we can write

$$\begin{split} \left| f^{(\varepsilon)}(x) - f(x) \right| &= \left| \int_{\mathbb{R}^1} \left[f(x - \varepsilon y) - f(x) \right] \varphi(y) \, dy \right| \le \left(\int_{|y| \le A} + \int_{|y| > A} \right) \left| f(x - \varepsilon y) - f(x) \right| \varphi(y) \, dy \\ &\le \omega(A\varepsilon) + 2M \cdot c_A, \quad \text{where} \quad c_A := \int_{|y| > A} \varphi(y) \, dy; \\ &\lim_{\varepsilon \searrow 0} \sup_{\mathbb{R}^1} |f^{(\varepsilon)} - f| \le 2M \cdot c_A \to 0 \quad \text{as} \quad A \to \infty. \end{split}$$

This implies the uniform convergence $f^{(\varepsilon)} \to f$ as $\varepsilon \searrow 0$ uniformly on \mathbb{R}^1 .

#4. Use the previous problem for the proof of the Weierstrass theorem: every continuous function on [-1, 1] can be uniformly approximated by polynomials.

Proof. Obviously, every function $f \in C([-1,1])$ can be extended as a continuous function on \mathbb{R}^1 satisfying $f(x) \equiv 0$ for $|x| \geq 2$. By the previous problem, it suffices to show that the function $f^{(\varepsilon)}$ can be uniformly approximated by polynomials. Using substitution $z = x - \varepsilon y$, $y = \varepsilon^{-1}(x - z)$, we can rewrite the expression for $f^{(\varepsilon)}$ in the form

$$f^{(\varepsilon)}(x) = \varepsilon^{-1} \int_{|z| \le 2} f(z) \varphi(\varepsilon^{-1}(x-z)) dz$$

For $|x| \leq 1$, $|z| \leq 2$, we have $|y| \leq 3/\varepsilon$. Fix an arbitrarily small $\delta > 0$. Note that the corresponding Taylor polynomials $\varphi_n(y) \to \varphi(y)$ as $n \to \infty$ uniformly on $|y| \leq 3/\varepsilon$. Choose a large n such that

$$\sup_{|y| \le 3/\varepsilon} |\varphi_n - \varphi| \le \frac{\varepsilon \delta}{4M}, \quad \text{where} \quad M := \sup |f|.$$

Then

$$P_n(x) := \varepsilon^{-1} \int_{|z| \le 2} f(z) \varphi_n(\varepsilon^{-1}(x-z)) dz.$$

is a polynomial of degree $\leq 2n$ satisfying

$$\left|f^{(\varepsilon)}(x) - P_n(x)\right| \le \varepsilon^{-1} \int_{|z|\le 2} |f(z)| \cdot \left|(\varphi_n - \varphi)\left(\varepsilon^{-1}(x - z)\right)\right| dz \le \varepsilon^{-1} \int_{|z|\le 2} M \cdot \frac{\varepsilon\delta}{4M} dz = \delta.$$

for $|x| \leq 1$. This proves the desired property.