Math 8602: REAL ANALYSIS. Spring 2016

Homework \#1. Problems and Solutions.

\#1. Show that the function

$$
f(x)=\sum_{k=1}^{\infty} \frac{\sin \left(4^{k} x\right)}{2^{k}}
$$

is continuous on \mathbb{R}^{1}, but its total variation $V[f ; a, b]=\infty$ for any $a<b$.
Proof. The function f is continuous as the uniform limit of continuous functions:

$$
f(x)=\lim _{n \rightarrow \infty} S_{n}(x), \quad \text { where } \quad S_{n}(x):=\sum_{k=1}^{n} 2^{-k} \sin \left(4^{k} x\right)
$$

Further, we fix $a<b$ and an interval $I \subset(a, b)$ of length $l=4^{-n} \cdot 2 \pi$. Note that the function

$$
f_{n}(x):=\sum_{k=n}^{\infty} 2^{-k} \sin \left(4^{k} x\right) \quad \text { is } \quad l \text {-periodic, } \quad \text { i.e. } \quad f_{n}(x+l) \equiv f_{n}(x) .
$$

Since $f=S_{n-1}+f_{n}$, where S_{n-1} is a smooth function, it suffices to show that

$$
V:=V\left[f_{n} ; I\right]:=\quad\left(\text { the total variation of } f_{n} \text { on } I\right) \quad=\infty
$$

Suppose otherwise, i.e. $V<\infty$, and let μ_{n} be a signed measure on I which corresponds to f_{n} according to Theorem 3.29. Then for integers $m \geq n$,

$$
V=\left|\mu_{n}\right|(I) \geq \int_{I}\left|\cos \left(4^{m} x\right)\right| d\left|\mu_{n}\right| \geq \int_{I} \cos \left(4^{m} x\right) d \mu_{n}=: \int_{I} \cos \left(4^{m} x\right) d f_{n} .
$$

Since both f_{n} and $\cos \left(4^{m} x\right)$ are l-periodic, using integration by parts (Theorem 3.36), we see that the boundary terms cancel, hence

$$
V \geq-\int_{I} f_{n} d \cos \left(4^{m} x\right)=4^{m} \int_{I} f_{n} \sin \left(4^{m} x\right) d x
$$

Further, for $k, m \geq n$, we have

$$
\sin \left(4^{k} x\right) \cdot \sin \left(4^{m} x\right)=\frac{1}{2}\left[\cos \left(4^{k}-4^{m}\right) x-\cos \left(4^{k}+4^{m}\right) x\right]
$$

By periodicity, the integrals of these expressions over I are zeros for $k \neq m$. Therefore,

$$
V \geq 4^{m} \sum_{k=n}^{\infty} 2^{-k} \int_{I} \sin \left(4^{k} x\right) \cdot \sin \left(4^{m} x\right) d x=2^{m} \int_{I} \sin ^{2}\left(4^{m} x\right) d x=2^{m-1} l=2^{m} \cdot \pi 4^{-n} .
$$

For large m, we have a contradiction with the assumption $V<\infty$. Therefore, $V=\infty$.
\#2. (Problem 36 on p. 127). Let X be the set of all real-valued Lebesgue measurable functions f on $[0,1]$ satisfying the inequality $|f| \leq 1$. Show that there is NO topology \mathcal{T} on X such that $f_{n} \rightarrow 0$ a.e. as $n \rightarrow \infty$ if and only if it converges with respect to \mathcal{T}.

Proof. Suppose there is such a topology \mathcal{T}. Let G be an open set $(G \in \mathcal{T})$ containing the function $f \equiv 0$. We claim that

$$
\begin{equation*}
\exists \varepsilon>0 \quad \text { such that from } \quad g \in X \quad \text { and } \quad\|g\|_{1}:=\int_{0}^{1}|g(x)| d x<\varepsilon \quad \text { it follows } \quad g \in G . \tag{1}
\end{equation*}
$$

Indeed, otherwise we have: $\forall n \in \mathbb{N}, \quad \exists g_{n} \notin G$ with $\left\|g_{n}\right\|_{1}<1 / n$. By Theorem $2.30, \exists$ a subsequence $g_{n_{j}} \rightarrow 0$ a.e. By our assumption, $g_{n_{j}} \rightarrow 0$ with respect to \mathcal{T}, which implies that $g_{n_{j}} \in G$ for large enough j. However, $g_{n} \notin G$ for all n. This contradiction proves (1).

Now take a sequence $f_{n} \in X$ such that $\left\|f_{n}\right\|_{1} \rightarrow 0$, but f_{n} does not converge to 0 a.e. For example, one can take f_{n} from iv on p. 61. From (1) it follows that for an arbitrary open set G containing $f \equiv 0$, there exists n_{0} such that $f_{n} \in G, \forall n \geq n_{0}$. This means that $f_{n} \rightarrow 0$ with respect to \mathcal{T}. Since f_{n} does not converge to 0 a.e., these two kinds of convergence are not equivalent.
\#3. Let f be a real valued continuous function on \mathbb{R}^{1} such that $f(x) \equiv 0$ for $|x| \geq 2$.
Show that

$$
f^{(\varepsilon)}(x):=\int_{\mathbb{R}^{1}} f(x-\varepsilon y) \varphi(y) d y \rightarrow f(x) \quad \text { as } \quad \varepsilon \searrow 0
$$

uniformly on \mathbb{R}^{1}, where

$$
\varphi(y):=\frac{1}{\sqrt{\pi}} \cdot e^{-y^{2}}
$$

Proof. Since f is continuous on $[-2,2]$, it is bounded: $|f| \leq M=$ const $<\infty$, and uniformly continuous:

$$
\omega(\rho):=\sup _{|x-y| \leq \delta}|f(x)-f(y)| \rightarrow 0 \quad \text { as } \quad \delta \searrow 0
$$

For an arbitrary constant $A>0$, we can write

$$
\begin{aligned}
\left|f^{(\varepsilon)}(x)-f(x)\right|=\mid \int_{\mathbb{R}^{1}} & {[f(x-\varepsilon y)-f(x)] \varphi(y) d y\left|\leq\left(\int_{|y| \leq A}+\int_{|y|>A}\right)\right| f(x-\varepsilon y)-f(x) \mid \varphi(y) d y } \\
& \leq \omega(A \varepsilon)+2 M \cdot c_{A}, \quad \text { where } \quad c_{A}:=\int_{|y|>A} \varphi(y) d y \\
& \underset{\varepsilon \searrow 0}{\limsup \sup _{\mathbb{R}^{1}}\left|f^{(\varepsilon)}-f\right| \leq 2 M \cdot c_{A} \rightarrow 0 \quad \text { as } \quad A \rightarrow \infty .}
\end{aligned}
$$

This implies the uniform convergence $f^{(\varepsilon)} \rightarrow f$ as $\varepsilon \searrow 0$ uniformly on \mathbb{R}^{1}.
\#4. Use the previous problem for the proof of the Weierstrass theorem: every continuous function on $[-1,1]$ can be uniformly approximated by polynomials.

Proof. Obviously, every function $f \in C([-1,1])$ can be extended as a continuous function on \mathbb{R}^{1} satisfying $f(x) \equiv 0$ for $|x| \geq 2$. By the previous problem, it suffices to show that the function $f^{(\varepsilon)}$ can be uniformly approximated by polynomials. Using substitution $z=x-\varepsilon y, y=\varepsilon^{-1}(x-z)$, we can rewrite the expression for $f^{(\varepsilon)}$ in the form

$$
f^{(\varepsilon)}(x)=\varepsilon^{-1} \int_{|z| \leq 2} f(z) \varphi\left(\varepsilon^{-1}(x-z)\right) d z
$$

For $|x| \leq 1,|z| \leq 2$, we have $|y| \leq 3 / \varepsilon$. Fix an arbitrarily small $\delta>0$. Note that the corresponding Taylor polynomials $\varphi_{n}(y) \rightarrow \varphi(y)$ as $n \rightarrow \infty$ uniformly on $|y| \leq 3 / \varepsilon$. Choose a large n such that

$$
\sup _{|y| \leq 3 / \varepsilon}\left|\varphi_{n}-\varphi\right| \leq \frac{\varepsilon \delta}{4 M}, \quad \text { where } \quad M:=\sup |f|
$$

Then

$$
P_{n}(x):=\varepsilon^{-1} \int_{|z| \leq 2} f(z) \varphi_{n}\left(\varepsilon^{-1}(x-z)\right) d z
$$

is a polynomial of degree $\leq 2 n$ satisfying

$$
\left|f^{(\varepsilon)}(x)-P_{n}(x)\right| \leq \varepsilon^{-1} \int_{|z| \leq 2}|f(z)| \cdot\left|\left(\varphi_{n}-\varphi\right)\left(\varepsilon^{-1}(x-z)\right)\right| d z \leq \varepsilon^{-1} \int_{|z| \leq 2} M \cdot \frac{\varepsilon \delta}{4 M} d z=\delta
$$

for $|x| \leq 1$. This proves the desired property.

