
Appendix 1: Fourier Transforms

Definition 1. The Fourier transform of a function f(x) ∈ L1(Rn) is

g(ω) = F [f ](ω) :=

∫
Rn

e−iωxf(x) dx. (1)

Here x = (x1, · · · , xn), ω = (ω1, · · · , ωn) ∈ Rn,

e−iωx := cosωx− i sinωx, ωx := ω1x1 + · · ·+ ωnxn.

Since |e−iωxf | = |f | ∈ L1, by Lebesgue’s Dominated Convergence Theorem we have lim
ω→ω0

g(ω) = g(ω0),

i.e. g = F [f ] is continuous for every f ∈ L1. Obviously, F is also bounded as an operator from L1 to
L∞ with ||F [f ] ||∞ ≤ ||f ||1.

First we restrict F to the Schwartz space S ⊂ C∞(Rn) of functions f satisfying

sup
Rn

|xαDβf(x)| = sup
Rn

∣∣∣∣∣xα1 · · ·xαn
∂β1+···+βnf

∂xβ1
1 · · · ∂xβn

n

∣∣∣∣∣ <∞

for all multi-indices α, β ≥ 0. Since (1 + |x|2)n is a polynomial, and (1 + |x|2)−n ∈ L1, we also have∣∣(1 + |x|2)nxαDβf
∣∣ ≤ C(α, β) = const <∞, xαDβf ∈ L1, and F [xαDβf ] ∈ L∞.

Lemma 1. For f ∈ S, g(ω) := F [f ](ω), and all multi-indices α, β ≥ 0, we have:

(a) ωαg(ω) = F
[
(−iD)αf

]
(ω); (b) Dβg(ω) = F

[
(−ix)βf

]
(ω).

Proof. The property (a) follows by integration by parts, (b) – by differentiation of the equality (1).

Corollary 1. If f ∈ S, then g := F [f ] ∈ S.

Proof. By the previous lemma, ωαDβg is a finite linear combination of F [xµDνf ] with multi-
indices µ, ν ≥ 0. Since all xµDνf belong to L1, we have |ωαDβg| ≤ C = const <∞.

We also define the inverse Fourier transform of any function g(ω) ∈ S by the formula

f(x) = F−1[g](x) := (2π)−n

∫
Rn

eiωxg(ω) dω = (2π)−nF [ g ]. (2)

From Corollary 1 and the last equality in (2) it follows that if g ∈ S, then F−1[g] ∈ S. We will
show that indeed, F−1 is the inverse operator of F on S (equalities (10) in Theorem 2 below). In the

following example, we check these equalities for f = φ := e−
x2

2 .

Example 1. We will find the Fourier transform of the function φ(x) = e−
x2

2 on R1. Since φ is an
even function, we have

g(ω) = F [φ](ω) =

∫
R1

cosωx · e−
x2

2 dx.
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Using polar coordinates, we get

g2(0) =

∫
R1

e−
x2

2 dx ·
∫
R1

e−
y2

2 dy =

∫∫
R2

e−
x2+y2

2 dx dy =

2π∫
0

dθ

∞∫
0

e−
r2

2 r dr = 2π,

hence g(0) =
√
2π. Further,

g′(ω) = −
∫
R1

sinωx · xe−
x2

2 dx =

∫
R1

sinωx · dφ(x) = −
∫
R1

ω cosωx · φ(x) dx = −ωg(ω),

(ln g)′ = −ω, ln g = const− ω2

2
,

and since g(0) =
√
2π,

g(ω) := F [φ](ω) = const · e−
ω2

2 =
√
2π · e−

ω2

2 .

We will use the same notation φ for the function

φ(x) = e−
x2

2 = e−
1
2

∑
x2
k on Rn.

Its Fourier transform is represented as the product:

g(ω) =

∫
Rn

e−iωxe−
x2

2 dx =

n∏
k=1

∫
R1

e−iωkxke−
x2k
2 dxk =

n∏
k=1

F [φ](ωk),

and by the above formula,

F [φ](ω) = F

[
e−

x2

2

]
(ω) =

n∏
k=1

(√
2π · e−

ω2
k
2

)
= (2π)

n
2 e−

ω2

2 = (2π)
n
2 φ(ω). (3)

The previous calculations remain the same if we replace i by −i. Therefore,

F−1[φ](x) = (2π)−nF [φ](x) = (2π)−
n
2 φ(x),

and
F [F−1[φ]](x) = (2π)−

n
2 F [φ](x) = φ(x), F−1[F [φ]](x) = (2π)

n
2 F−1[φ](x) = φ(x). (4)

Theorem 1. For any constants k > 0 and h ∈ Rn, operators F and F−1 defined by formulas (1)
and (2) on S, satisfy the equalities

F [f(kx)](ω) = k−nF [f(x)](k−1ω), F−1[g(kω)](x) = k−nF−1[g(ω)](k−1x), (5)

F [f(x+ h)](ω) = eiωhF [f(x)](ω), F−1[g(ω + h)](x) = e−ihxF−1[g(ω)](x), (6)

F [eihxf(x)](ω) = F [f(x)](ω − h), F−1[eihωg(ω)](x) = F−1[g(ω)](x+ h). (7)

F [f ∗ g] = F [f ] · F [g]. (8)
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Proof of (5)–(7) is easy to obtain by changing the variables. The equality (8) follows from Fubini’s
theorem:

F [f ∗ g](ω) =
∫
e−iωx

[∫
f(x− t)g(t) dt

]
dx

=

∫
e−iωtg(t)

[∫
e−iω(x−t)f(x− t) dx

]
dt = F [f ](ω) ·

∫
e−iωtg(t) dt = F [f ](ω) · F [g](ω).

Note that the complex-valued functions f : Rn → C in L2(Rn) compose a Hilbert space with the
inner (or scalar) product

⟨f, g⟩ :=
∫
Rn

fg dx.

Theorem 2. For all f, g ∈ S, we have

⟨F [f ], g⟩ =
∫
Rn

F [f ](ω) · g(ω) dω = (2π)n⟨f, F−1[g]⟩. (9)

Moreover,
F−1

[
F [f ]

]
= f, F

[
F−1[f ]

]
= f, (10)

and the following Plancherel equalities hold true:

∥F [f ] ∥22 = (2π)n∥ f ∥22, ∥ f ∥22 = (2π)n∥F−1[f ] ∥22. (11)

Proof. The equality (9) follows from Fubini’s theorem:

⟨F [f ], g⟩ =
∫ [∫

e−iωxf(x) dx

]
g(ω) dω =

∫
f(x)

[∫
eiωxg(ω) dω

]
dx = (2π)n⟨f, F−1[g]⟩.

Further, denote by S0 the set of all functions f ∈ S satisfying (10). By Theorem 1 with g := F [f ],
we have

F [f(kx)](ω) = k−ng(k−1ω), F−1[k−ng(k−1ω)](x) = f(kx);

F [f(x+ h)](ω) = eiωhg(ω), F−1[eiωhg(ω)](x) = f(x+ h).

In other words, if f ∈ S0, then f(kx) and f(x + h) satisfy the first equality in (10). The second

equality follows from the relation F−1[f ] = (2π)−nF [ f ]. Therefore, from f ∈ S0 it follows that
f(kx), f(x+ h) ∈ S0.

By virtue of (4), we know that φ(x) = e−
x2

2 ∈ S0. Then

K(x) := (2π)−
n
2 φ(x), Kε(x) := ε−nK(ε−1x), and Kε(x− t)

belong to S0 for all ε > 0 and t ∈ Rn. It is easy to verify that

fε(x) := (f ∗Kε)(x) =

∫
Rn

f(t)Kε(x− t) dt =

∫
Rn

f(x− εy)K(y) dy
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belong to S for for all f ∈ S and ε > 0. In addition,

F−1
[
F [fε]

]
=

∫
Rn

f(t)F−1
[
F [Kε(x− t)]

]
dt =

∫
Rn

f(t)Kε(x− t) dt = fε,

and similarly, F
[
F−1[fε]

]
= fε. This means that in fact we have fε ∈ S0.

By our choice of constants, we have
∫
K(y) dy = 1. Hence

(fε − f)(x) =

∫
Rn

[
f(x− εy)− f(x)

]
·K(y) dy.

Using Minkowski’s integral inequality, we estimate the L2-norm as follows:

||fε − f ||2 ≤
∫
Rn

||f(x− εy)− f(x)||2 ·K(y) dy.

We have ||f(x − h) − f(x)||2 → 0 as h → 0, even for f ∈ L2. Then by the Dominated Convergence
Theorem, ||fε − f ||2 → 0 as ε↘ 0.

Finally, if f ∈ S satisfies (10), then (11) follows from (9) with g := F [f ]. The previous argument
shows that these equalities hold true on a family S0 ⊆ S, which is dense in S0 with respect to the
L2-norm. By standard approximation, these properties are extended to the whole class S, i.e. S0 = S.

The Plancherel equalities allow to define Fourier transforms F and F−1 for functions f ∈ L2 as
limits in L2:

F [f ] := lim
n→∞

F [fn], F−1[f ] := lim
n→∞

F−1[fn], where f = lim
n→∞

fn, fn ∈ S.

Then “by continuity”, all the equalities (5)–(7) and (9)–(11) also hold true for functions in L2.

Example 2. The Fourier transform of the function f(x) := e−k|x| on R1, where k = const > 0, is

g(ω) := F [f ](ω) =

∫
R1

e−iωx−k|x| = 2 · Re
∞∫
0

e−(k+iω)xdx = 2 · Re 1

k + iω
=

2k

k2 + ω2
.

Since g is an even function, we also have

F [g](ω) :=

∫
R1

e−iωxg(x) dx =

∫
R1

eiωxg(x) dx = 2π · F−1[g](ω) = 2π · f(ω),

and

F
[ k

k2 + x2

]
(ω) =

1

2
· F [g](ω) = π · e−k|ω|.

Definition 2. For n = 0, 1, 2, . . ., the Hermite polynomials are defined as

Hn(x) := (−1)nex
2
(
e−x2

)(n)
,

so that H0 = 1,H1 = 2x, etc. The corresponding Hermite functions φn(x) := Hn(x) e
−x2

2 .
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In particular, φ0(x) = e−
x2

2 = φ(x) in Example 1. All functions φn belong to the Schwartz space S.
Using integration by parts, it is easy to check that the system {φn} is orthogonal in L2 := L2(R1):

⟨φm, φn⟩ :=
∫
R1

φmφndx =

∫
R1

HmHne
−x2

dx = 0 for m ̸= n.

Theorem 3. The system of Hermite functions {φn} is complete in L2, i.e. from f ∈ L2 and
⟨φn, f⟩ = 0 for all n it follows f = 0 a.e.

Proof. The assumption ⟨φn, f⟩ = 0 for all n is equivalent to ⟨xnφ, f⟩ = 0 for all n, because
every xn is a linear combination of Hk, k ≤ n, and correspondingly, xnφ is a linear combination of
Hkφ = φk, k ≤ n. Consider the Fourier transform

g(ω) := F [φf ](ω) =

∫
R1

e−iωx−x2

2 f(x) dx.

This integral is well defined for complex ω = ω1+iω2, and g(ω) is analytic in the whole complex plane C.
By our assumptions, all the derivatives

g(n)(0) =

∫
R1

(−ix)ne−
x2

2 f(x) dx = (−i)n⟨xnφ, f⟩ = 0.

By uniqueness for analytic functions, we must have g ≡ 0. Finally, from the Plancherel equality it
follows

2π · ||φf ||22 = ||g||22 = 0,

so that f = 0 a.e.

Theorem 4. The Hermite functions φn are eigenfunctions of the Fourier transform:

F [φn] = cnφn, where cn := (−i)n
√
2π for n = 0, 1, 2, . . . . (12)

Proof. We know that this property holds true for n = 0 with c0 :=
√
2π. Moreover,

(x−D)φk = (−1)k(x−D)

[
e

x2

2

(
e−x2

)(k)
]
= (−1)k+1e

x2

2

(
e−x2

)(k+1)
= φk+1,

so that by induction, φn = (x−D)nφ for all n = 0, 1, 2, . . .. Note that by Lemma 1,

F
[
(x−D)f

]
= −i F

[
(−i)(D − x)f

]
= −i (ω −D)F [f ] for f ∈ S.

Therefore,

F [φn] = F
[
(x−D)nφ

]
= (−i)n(ω −D)nF [φ] = (−i)n

√
2π · (ω −D)nφ = (−i)n

√
2π · φn.

Theorem is proved.

At the conclusion, we prove a few relations between the Fourier operator F , the differential operator
L := D2 − x2, and the Hermite functions φn := Hnφ.
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Theorem 5. (a). The Fourier operator F is commutative with L := D2 − x2 on S:

F [Lf ] = LF [f ] for f ∈ S. (13)

In particular, if Lf := f ′′ − x2f = 0, then g(ω) := F [f ](ω) also satisfies Lg := g′′ − ω2g = 0.

(b). The Hermite functions φn := Hnφ are eigenfunctions of L:

Lφn := φ′′
n − x2φn = λnφn with λn := −(2n+ 1) for n = 0, 1, 2, . . . . (14)

(c). The Hermite polynomials Hn satisfy the Hermite equation

y′′ − 2xy′ = µy with µ = 2n for n = 0, 1, 2, . . . . (15)

Proof. (a). By Lemma 1, the functions f and g := F [f ] in S satisfy

F [D2f ] = −F [(−iD)2f ] = −ω2g, F [−x2f ] = F [(−ix)2f ] = D2g.

From these relations, the equality (13) follows:

F [Lf ] = F [D2f − x2f ] = −ω2g +D2g = Lg = LF [f ].

(b) and (c). We will try to find polynomials Pn of degree n (eventually Pn = const ·Hn) such that

ψn := Pnφ satisfy Lψn = ψ′′
n − x2ψn = λψn with a constant λ (depending on n). Since φ(x) := e−

x2

2

satisfies φ′ = −xφ, φ′′ = (x2 − 1)φ, we get

Lψn = P ′′
nφ+ 2P ′

nφ
′ + Pnφ

′′ − x2Pnφ = (P ′′
n − 2xP ′

n − Pn)φ = λPnφ.

Here Pn =
n∑

k=0

akx
k, an ̸= 0. Comparing the coefficients of xn in both sides, we see that the equality is

only possible if λ = λn := −(2n+1). One can select an ̸= 0 in an arbitrary way, and then the remaining
coefficients ak are uniquely defined by a standard recurrent procedure.

From the equalities Lψk = λkψk it follows

(ψ′
mψn − ψ′

nψm)′ = ψ′′
mψn − ψ′′

nψm = (λm − λn)ψmψn.

Integrating over R1 yields 0 = (λm − λn) · ⟨ψm, ψn⟩, so that {ψn} is an orthogonal system in L2.
Note that both {φn := Hnφ} and {ψn := Pnφ} can be obtained by orthogonalization of {xnφ}, i.e.
⟨φn, x

kφ⟩ = ⟨ψn, x
kφ⟩ = 0 for all k ≤ n− 1. From this observation it follows that φn = const · ψn and

Hn = const · Pn. Finally, since Lψn = λnψn and P ′′
n − 2xP ′

n + 2nPn = 0, the functions φn := Hnφ
satisfy (14), and y = Hn satisfy (15). Theorem is proved.
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