## Appendix 1: Fourier Transforms

Definition 1. The Fourier transform of a function $f(x) \in L^{1}\left(\mathbb{R}^{n}\right)$ is

$$
\begin{equation*}
g(\omega)=F[f](\omega):=\int_{\mathbb{R}^{n}} e^{-i \omega x} f(x) d x \tag{1}
\end{equation*}
$$

Here $x=\left(x_{1}, \cdots, x_{n}\right), \omega=\left(\omega_{1}, \cdots, \omega_{n}\right) \in \mathbb{R}^{n}$,

$$
e^{-i \omega x}:=\cos \omega x-i \sin \omega x, \quad \omega x:=\omega_{1} x_{1}+\cdots+\omega_{n} x_{n}
$$

Since $\left|e^{-i \omega x} f\right|=|f| \in L^{1}$, by Lebesgue's Dominated Convergence Theorem we have $\lim _{\omega \rightarrow \omega_{0}} g(\omega)=g\left(\omega_{0}\right)$, i.e. $g=F[f]$ is continuous for every $f \in L^{1}$. Obviously, $F$ is also bounded as an operator from $L^{1}$ to $L^{\infty}$ with $\|F[f]\|_{\infty} \leq\|f\|_{1}$.

First we restrict $F$ to the Schwartz space $S \subset C^{\infty}\left(\mathbb{R}^{n}\right)$ of functions $f$ satisfying

$$
\sup _{\mathbb{R}^{n}}\left|x^{\alpha} D^{\beta} f(x)\right|=\sup _{\mathbb{R}^{n}}\left|x^{\alpha_{1}} \cdots x^{\alpha_{n}} \frac{\partial^{\beta_{1}+\cdots+\beta_{n}} f}{\partial x_{1}^{\beta_{1}} \cdots \partial x_{n}^{\beta_{n}}}\right|<\infty
$$

for all multi-indices $\alpha, \beta \geq 0$. Since $\left(1+|x|^{2}\right)^{n}$ is a polynomial, and $\left(1+|x|^{2}\right)^{-n} \in L^{1}$, we also have

$$
\left|\left(1+|x|^{2}\right)^{n} x^{\alpha} D^{\beta} f\right| \leq C(\alpha, \beta)=\mathrm{const}<\infty, \quad x^{\alpha} D^{\beta} f \in L^{1}, \quad \text { and } \quad F\left[x^{\alpha} D^{\beta} f\right] \in L^{\infty} .
$$

Lemma 1. For $f \in S, \quad g(\omega):=F[f](\omega)$, and all multi-indices $\alpha, \beta \geq 0$, we have:
(a) $\omega^{\alpha} g(\omega)=F\left[(-i D)^{\alpha} f\right](\omega) ;$
$(\mathbf{b}) D^{\beta} g(\omega)=F\left[(-i x)^{\beta} f\right](\omega)$.

Proof. The property (a) follows by integration by parts, (b) - by differentiation of the equality (1).

Corollary 1. If $f \in S$, then $g:=F[f] \in S$.
Proof. By the previous lemma, $\omega^{\alpha} D^{\beta} g$ is a finite linear combination of $F\left[x^{\mu} D^{\nu} f\right]$ with multiindices $\mu, \nu \geq 0$. Since all $x^{\mu} D^{\nu} f$ belong to $L^{1}$, we have $\left|\omega^{\alpha} D^{\beta} g\right| \leq C=$ const $<\infty$.

We also define the inverse Fourier transform of any function $g(\omega) \in S$ by the formula

$$
\begin{equation*}
f(x)=F^{-1}[g](x):=(2 \pi)^{-n} \int_{\mathbb{R}^{n}} e^{i \omega x} g(\omega) d \omega=(2 \pi)^{-n} \overline{F[\bar{g}]} \tag{2}
\end{equation*}
$$

From Corollary 1 and the last equality in (2) it follows that if $g \in S$, then $F^{-1}[g] \in S$. We will show that indeed, $F^{-1}$ is the inverse operator of $F$ on $S$ (equalities (10) in Theorem 2 below). In the following example, we check these equalities for $f=\varphi:=e^{-\frac{x^{2}}{2}}$.

Example 1. We will find the Fourier transform of the function $\varphi(x)=e^{-\frac{x^{2}}{2}}$ on $\mathbb{R}^{1}$. Since $\varphi$ is an even function, we have

$$
g(\omega)=F[\varphi](\omega)=\int_{\mathbb{R}^{1}} \cos \omega x \cdot e^{-\frac{x^{2}}{2}} d x
$$

Using polar coordinates, we get

$$
g^{2}(0)=\int_{\mathbb{R}^{1}} e^{-\frac{x^{2}}{2}} d x \cdot \int_{\mathbb{R}^{1}} e^{-\frac{y^{2}}{2}} d y=\iint_{\mathbb{R}^{2}} e^{-\frac{x^{2}+y^{2}}{2}} d x d y=\int_{0}^{2 \pi} d \theta \int_{0}^{\infty} e^{-\frac{r^{2}}{2}} r d r=2 \pi,
$$

hence $g(0)=\sqrt{2 \pi}$. Further,

$$
\begin{gathered}
g^{\prime}(\omega)=-\int_{\mathbb{R}^{1}} \sin \omega x \cdot x e^{-\frac{x^{2}}{2}} d x=\int_{\mathbb{R}^{1}} \sin \omega x \cdot d \varphi(x)=-\int_{\mathbb{R}^{1}} \omega \cos \omega x \cdot \varphi(x) d x=-\omega g(\omega), \\
(\ln g)^{\prime}=-\omega, \quad \ln g=\text { const }-\frac{\omega^{2}}{2},
\end{gathered}
$$

and since $g(0)=\sqrt{2 \pi}$,

$$
g(\omega):=F[\varphi](\omega)=\text { const } \cdot e^{-\frac{\omega^{2}}{2}}=\sqrt{2 \pi} \cdot e^{-\frac{\omega^{2}}{2}} .
$$

We will use the same notation $\varphi$ for the function

$$
\varphi(x)=e^{-\frac{x^{2}}{2}}=e^{-\frac{1}{2} \sum x_{k}^{2}} \quad \text { on } \quad \mathbb{R}^{n}
$$

Its Fourier transform is represented as the product:

$$
g(\omega)=\int_{\mathbb{R}^{n}} e^{-i \omega x} e^{-\frac{x^{2}}{2}} d x=\prod_{k=1}^{n} \int_{\mathbb{R}^{1}} e^{-i \omega_{k} x_{k}} e^{-\frac{x_{k}^{2}}{2}} d x_{k}=\prod_{k=1}^{n} F[\varphi]\left(\omega_{k}\right),
$$

and by the above formula,

$$
\begin{equation*}
F[\varphi](\omega)=F\left[e^{-\frac{x^{2}}{2}}\right](\omega)=\prod_{k=1}^{n}\left(\sqrt{2 \pi} \cdot e^{-\frac{\omega_{k}^{2}}{2}}\right)=(2 \pi)^{\frac{n}{2}} e^{-\frac{\omega^{2}}{2}}=(2 \pi)^{\frac{n}{2}} \varphi(\omega) . \tag{3}
\end{equation*}
$$

The previous calculations remain the same if we replace $i$ by $-i$. Therefore,

$$
F^{-1}[\varphi](x)=(2 \pi)^{-n} F[\varphi](x)=(2 \pi)^{-\frac{n}{2}} \varphi(x),
$$

and

$$
\begin{equation*}
F\left[F^{-1}[\varphi]\right](x)=(2 \pi)^{-\frac{n}{2}} F[\varphi](x)=\varphi(x), \quad F^{-1}[F[\varphi]](x)=(2 \pi)^{\frac{n}{2}} F^{-1}[\varphi](x)=\varphi(x) \tag{4}
\end{equation*}
$$

Theorem 1. For any constants $k>0$ and $h \in \mathbb{R}^{n}$, operators $F$ and $F^{-1}$ defined by formulas (1) and (2) on $S$, satisfy the equalities

$$
\begin{array}{cl}
F[f(k x)](\omega)=k^{-n} F[f(x)]\left(k^{-1} \omega\right), & F^{-1}[g(k \omega)](x)=k^{-n} F^{-1}[g(\omega)]\left(k^{-1} x\right), \\
F[f(x+h)](\omega)=e^{i \omega h} F[f(x)](\omega), & F^{-1}[g(\omega+h)](x)=e^{-i h x} F^{-1}[g(\omega)](x), \\
F\left[e^{i h x} f(x)\right](\omega)=F[f(x)](\omega-h), & F^{-1}\left[e^{i h \omega} g(\omega)\right](x)=F^{-1}[g(\omega)](x+h) . \\
F[f * g]=F[f] \cdot F[g] . \tag{8}
\end{array}
$$

Proof of (5)-(7) is easy to obtain by changing the variables. The equality (8) follows from Fubini's theorem:

$$
\begin{gathered}
F[f * g](\omega)=\int e^{-i \omega x}\left[\int f(x-t) g(t) d t\right] d x \\
=\int e^{-i \omega t} g(t)\left[\int e^{-i \omega(x-t)} f(x-t) d x\right] d t=F[f](\omega) \cdot \int e^{-i \omega t} g(t) d t=F[f](\omega) \cdot F[g](\omega) .
\end{gathered}
$$

Note that the complex-valued functions $f: \mathbb{R}^{n} \rightarrow C$ in $L^{2}\left(\mathbb{R}^{n}\right)$ compose a Hilbert space with the inner (or scalar) product

$$
\langle f, g\rangle:=\int_{\mathbb{R}^{n}} f \bar{g} d x .
$$

Theorem 2. For all $f, g \in S$, we have

$$
\begin{equation*}
\langle F[f], g\rangle=\int_{\mathbb{R}^{n}} F[f](\omega) \cdot \overline{g(\omega)} d \omega=(2 \pi)^{n}\left\langle f, F^{-1}[g]\right\rangle . \tag{9}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
F^{-1}[F[f]]=f, \quad F\left[F^{-1}[f]\right]=f \tag{10}
\end{equation*}
$$

and the following Plancherel equalities hold true:

$$
\begin{equation*}
\|F[f]\|_{2}^{2}=(2 \pi)^{n}\|f\|_{2}^{2}, \quad\|f\|_{2}^{2}=(2 \pi)^{n}\left\|F^{-1}[f]\right\|_{2}^{2} \tag{11}
\end{equation*}
$$

Proof. The equality (9) follows from Fubini's theorem:

$$
\langle F[f], g\rangle=\int\left[\int e^{-i \omega x} f(x) d x\right] \overline{g(\omega)} d \omega=\int f(x)\left[\overline{\int e^{i \omega x} g(\omega) d \omega}\right] d x=(2 \pi)^{n}\left\langle f, F^{-1}[g]\right\rangle
$$

Further, denote by $S_{0}$ the set of all functions $f \in S$ satisfying (10). By Theorem 1 with $g:=F[f]$, we have

$$
\begin{aligned}
F[f(k x)](\omega)=k^{-n} g\left(k^{-1} \omega\right), & F^{-1}\left[k^{-n} g\left(k^{-1} \omega\right)\right](x)=f(k x) ; \\
F[f(x+h)](\omega)=e^{i \omega h} g(\omega), & F^{-1}\left[e^{i \omega h} g(\omega)\right](x)=f(x+h) .
\end{aligned}
$$

In other words, if $f \in S_{0}$, then $f(k x)$ and $f(x+h)$ satisfy the first equality in (10). The second equality follows from the relation $F^{-1}[f]=(2 \pi)^{-n} \overline{F[\bar{f}]}$. Therefore, from $f \in S_{0}$ it follows that $f(k x), f(x+h) \in S_{0}$.

By virtue of (4), we know that $\varphi(x)=e^{-\frac{x^{2}}{2}} \in S_{0}$. Then

$$
K(x):=(2 \pi)^{-\frac{n}{2}} \varphi(x), \quad K^{\varepsilon}(x):=\varepsilon^{-n} K\left(\varepsilon^{-1} x\right), \quad \text { and } \quad K^{\varepsilon}(x-t)
$$

belong to $S_{0}$ for all $\varepsilon>0$ and $t \in \mathbb{R}^{n}$. It is easy to verify that

$$
f_{\varepsilon}(x):=\left(f * K^{\varepsilon}\right)(x)=\int_{\mathbb{R}^{n}} f(t) K^{\varepsilon}(x-t) d t=\int_{\mathbb{R}^{n}} f(x-\varepsilon y) K(y) d y
$$

belong to $S$ for for all $f \in S$ and $\varepsilon>0$. In addition,

$$
F^{-1}\left[F\left[f_{\varepsilon}\right]\right]=\int_{\mathbb{R}^{n}} f(t) F^{-1}\left[F\left[K^{\varepsilon}(x-t)\right]\right] d t=\int_{\mathbb{R}^{n}} f(t) K^{\varepsilon}(x-t) d t=f_{\varepsilon},
$$

and similarly, $F\left[F^{-1}\left[f_{\varepsilon}\right]\right]=f_{\varepsilon}$. This means that in fact we have $f_{\varepsilon} \in S_{0}$.
By our choice of constants, we have $\int K(y) d y=1$. Hence

$$
\left(f_{\varepsilon}-f\right)(x)=\int_{\mathbb{R}^{n}}[f(x-\varepsilon y)-f(x)] \cdot K(y) d y .
$$

Using Minkowski's integral inequality, we estimate the $L^{2}$-norm as follows:

$$
\left\|f_{\varepsilon}-f\right\|_{2} \leq \int_{\mathbb{R}^{n}}\|f(x-\varepsilon y)-f(x)\|_{2} \cdot K(y) d y .
$$

We have $\|f(x-h)-f(x)\|_{2} \rightarrow 0$ as $h \rightarrow 0$, even for $f \in L^{2}$. Then by the Dominated Convergence Theorem, $\left\|f_{\varepsilon}-f\right\|_{2} \rightarrow 0$ as $\varepsilon \searrow 0$.

Finally, if $f \in S$ satisfies (10), then (11) follows from (9) with $g:=F[f]$. The previous argument shows that these equalities hold true on a family $S_{0} \subseteq S$, which is dense in $S_{0}$ with respect to the $L^{2}$-norm. By standard approximation, these properties are extended to the whole class $S$, i.e. $S_{0}=S$.

The Plancherel equalities allow to define Fourier transforms $F$ and $F^{-1}$ for functions $f \in L^{2}$ as limits in $L^{2}$ :

$$
F[f]:=\lim _{n \rightarrow \infty} F\left[f_{n}\right], \quad F^{-1}[f]:=\lim _{n \rightarrow \infty} F^{-1}\left[f_{n}\right], \quad \text { where } \quad f=\lim _{n \rightarrow \infty} f_{n}, \quad f_{n} \in S
$$

Then "by continuity", all the equalities (5)-(7) and (9)-(11) also hold true for functions in $L^{2}$.
Example 2. The Fourier transform of the function $f(x):=e^{-k|x|}$ on $\mathbb{R}^{1}$, where $k=$ const $>0$, is

$$
g(\omega):=F[f](\omega)=\int_{\mathbb{R}^{1}} e^{-i \omega x-k|x|}=2 \cdot \operatorname{Re} \int_{0}^{\infty} e^{-(k+i \omega) x} d x=2 \cdot \operatorname{Re} \frac{1}{k+i \omega}=\frac{2 k}{k^{2}+\omega^{2}} .
$$

Since $g$ is an even function, we also have

$$
F[g](\omega):=\int_{\mathbb{R}^{1}} e^{-i \omega x} g(x) d x=\int_{\mathbb{R}^{1}} e^{i \omega x} g(x) d x=2 \pi \cdot F^{-1}[g](\omega)=2 \pi \cdot f(\omega),
$$

and

$$
F\left[\frac{k}{k^{2}+x^{2}}\right](\omega)=\frac{1}{2} \cdot F[g](\omega)=\pi \cdot e^{-k|\omega|} .
$$

Definition 2. For $n=0,1,2, \ldots$, the Hermite polynomials are defined as

$$
H_{n}(x):=(-1)^{n} e^{x^{2}}\left(e^{-x^{2}}\right)^{(n)}
$$

so that $H_{0}=1, H_{1}=2 x$, etc. The corresponding Hermite functions $\varphi_{n}(x):=H_{n}(x) e^{-\frac{x^{2}}{2}}$.

In particular, $\varphi_{0}(x)=e^{-\frac{x^{2}}{2}}=\varphi(x)$ in Example 1. All functions $\varphi_{n}$ belong to the Schwartz space $S$. Using integration by parts, it is easy to check that the system $\left\{\varphi_{n}\right\}$ is orthogonal in $L^{2}:=L^{2}\left(\mathbb{R}^{1}\right)$ :

$$
\left\langle\varphi_{m}, \varphi_{n}\right\rangle:=\int_{\mathbb{R}^{1}} \varphi_{m} \varphi_{n} d x=\int_{\mathbb{R}^{1}} H_{m} H_{n} e^{-x^{2}} d x=0 \quad \text { for } \quad m \neq n
$$

Theorem 3. The system of Hermite functions $\left\{\varphi_{n}\right\}$ is complete in $L^{2}$, i.e. from $f \in L^{2}$ and $\left\langle\varphi_{n}, f\right\rangle=0$ for all $n$ it follows $f=0$ a.e.

Proof. The assumption $\left\langle\varphi_{n}, f\right\rangle=0$ for all $n$ is equivalent to $\left\langle x^{n} \varphi, f\right\rangle=0$ for all $n$, because every $x^{n}$ is a linear combination of $H_{k}, k \leq n$, and correspondingly, $x^{n} \varphi$ is a linear combination of $H_{k} \varphi=\varphi_{k}, k \leq n$. Consider the Fourier transform

$$
g(\omega):=F[\varphi f](\omega)=\int_{\mathbb{R}^{1}} e^{-i \omega x-\frac{x^{2}}{2}} f(x) d x
$$

This integral is well defined for complex $\omega=\omega_{1}+i \omega_{2}$, and $g(\omega)$ is analytic in the whole complex plane $C$. By our assumptions, all the derivatives

$$
g^{(n)}(0)=\int_{\mathbb{R}^{1}}(-i x)^{n} e^{-\frac{x^{2}}{2}} f(x) d x=(-i)^{n}\left\langle x^{n} \varphi, f\right\rangle=0
$$

By uniqueness for analytic functions, we must have $g \equiv 0$. Finally, from the Plancherel equality it follows

$$
2 \pi \cdot\|\varphi f\|_{2}^{2}=\|g\|_{2}^{2}=0
$$

so that $f=0$ a.e.
Theorem 4. The Hermite functions $\varphi_{n}$ are eigenfunctions of the Fourier transform:

$$
\begin{equation*}
F\left[\varphi_{n}\right]=c_{n} \varphi_{n}, \quad \text { where } \quad c_{n}:=(-i)^{n} \sqrt{2 \pi} \quad \text { for } \quad n=0,1,2, \ldots \tag{12}
\end{equation*}
$$

Proof. We know that this property holds true for $n=0$ with $c_{0}:=\sqrt{2 \pi}$. Moreover,

$$
(x-D) \varphi_{k}=(-1)^{k}(x-D)\left[e^{\frac{x^{2}}{2}}\left(e^{-x^{2}}\right)^{(k)}\right]=(-1)^{k+1} e^{\frac{x^{2}}{2}}\left(e^{-x^{2}}\right)^{(k+1)}=\varphi_{k+1},
$$

so that by induction, $\varphi_{n}=(x-D)^{n} \varphi$ for all $n=0,1,2, \ldots$ Note that by Lemma 1,

$$
F[(x-D) f]=-i F[(-i)(D-x) f]=-i(\omega-D) F[f] \quad \text { for } \quad f \in S .
$$

Therefore,

$$
F\left[\varphi_{n}\right]=F\left[(x-D)^{n} \varphi\right]=(-i)^{n}(\omega-D)^{n} F[\varphi]=(-i)^{n} \sqrt{2 \pi} \cdot(\omega-D)^{n} \varphi=(-i)^{n} \sqrt{2 \pi} \cdot \varphi_{n}
$$

Theorem is proved.
At the conclusion, we prove a few relations between the Fourier operator $F$, the differential operator $L:=D^{2}-x^{2}$, and the Hermite functions $\varphi_{n}:=H_{n} \varphi$.

Theorem 5. (a). The Fourier operator $F$ is commutative with $L:=D^{2}-x^{2}$ on $S$ :

$$
\begin{equation*}
F[L f]=L F[f] \quad \text { for } \quad f \in S \tag{13}
\end{equation*}
$$

In particular, if $L f:=f^{\prime \prime}-x^{2} f=0$, then $g(\omega):=F[f](\omega)$ also satisfies $L g:=g^{\prime \prime}-\omega^{2} g=0$.
(b). The Hermite functions $\varphi_{n}:=H_{n} \varphi$ are eigenfunctions of $L$ :

$$
\begin{equation*}
L \varphi_{n}:=\varphi_{n}^{\prime \prime}-x^{2} \varphi_{n}=\lambda_{n} \varphi_{n} \quad \text { with } \quad \lambda_{n}:=-(2 n+1) \quad \text { for } \quad n=0,1,2, \ldots \tag{14}
\end{equation*}
$$

(c). The Hermite polynomials $H_{n}$ satisfy the Hermite equation

$$
\begin{equation*}
y^{\prime \prime}-2 x y^{\prime}=\mu y \quad \text { with } \quad \mu=2 n \quad \text { for } \quad n=0,1,2, \ldots \tag{15}
\end{equation*}
$$

Proof. (a). By Lemma 1, the functions $f$ and $g:=F[f]$ in $S$ satisfy

$$
F\left[D^{2} f\right]=-F\left[(-i D)^{2} f\right]=-\omega^{2} g, \quad F\left[-x^{2} f\right]=F\left[(-i x)^{2} f\right]=D^{2} g
$$

From these relations, the equality (13) follows:

$$
F[L f]=F\left[D^{2} f-x^{2} f\right]=-\omega^{2} g+D^{2} g=L g=L F[f]
$$

(b) and (c). We will try to find polynomials $P_{n}$ of degree $n$ (eventually $P_{n}=$ const $\cdot H_{n}$ ) such that $\psi_{n}:=P_{n} \varphi$ satisfy $L \psi_{n}=\psi_{n}^{\prime \prime}-x^{2} \psi_{n}=\lambda \psi_{n}$ with a constant $\lambda($ depending on $n)$. Since $\varphi(x):=e^{-\frac{x^{2}}{2}}$ satisfies $\varphi^{\prime}=-x \varphi, \varphi^{\prime \prime}=\left(x^{2}-1\right) \varphi$, we get

$$
L \psi_{n}=P_{n}^{\prime \prime} \varphi+2 P_{n}^{\prime} \varphi^{\prime}+P_{n} \varphi^{\prime \prime}-x^{2} P_{n} \varphi=\left(P_{n}^{\prime \prime}-2 x P_{n}^{\prime}-P_{n}\right) \varphi=\lambda P_{n} \varphi
$$

Here $P_{n}=\sum_{k=0}^{n} a_{k} x^{k}, a_{n} \neq 0$. Comparing the coefficients of $x^{n}$ in both sides, we see that the equality is only possible if $\lambda=\lambda_{n}:=-(2 n+1)$. One can select $a_{n} \neq 0$ in an arbitrary way, and then the remaining coefficients $a_{k}$ are uniquely defined by a standard recurrent procedure.

From the equalities $L \psi_{k}=\lambda_{k} \psi_{k}$ it follows

$$
\left(\psi_{m}^{\prime} \psi_{n}-\psi_{n}^{\prime} \psi_{m}\right)^{\prime}=\psi_{m}^{\prime \prime} \psi_{n}-\psi_{n}^{\prime \prime} \psi_{m}=\left(\lambda_{m}-\lambda_{n}\right) \psi_{m} \psi_{n}
$$

Integrating over $\mathbb{R}^{1}$ yields $0=\left(\lambda_{m}-\lambda_{n}\right) \cdot\left\langle\psi_{m}, \psi_{n}\right\rangle$, so that $\left\{\psi_{n}\right\}$ is an orthogonal system in $L^{2}$. Note that both $\left\{\varphi_{n}:=H_{n} \varphi\right\}$ and $\left\{\psi_{n}:=P_{n} \varphi\right\}$ can be obtained by orthogonalization of $\left\{x^{n} \varphi\right\}$, i.e. $\left\langle\varphi_{n}, x^{k} \varphi\right\rangle=\left\langle\psi_{n}, x^{k} \varphi\right\rangle=0$ for all $k \leq n-1$. From this observation it follows that $\varphi_{n}=$ const $\cdot \psi_{n}$ and $H_{n}=\mathrm{const} \cdot P_{n}$. Finally, since $L \psi_{n}=\lambda_{n} \psi_{n}$ and $P_{n}^{\prime \prime}-2 x P_{n}^{\prime}+2 n P_{n}=0$, the functions $\varphi_{n}:=H_{n} \varphi$ satisfy (14), and $y=H_{n}$ satisfy (15). Theorem is proved.

