Math 8602: REAL ANALYSIS. Spring 2016. Final Exam. Problems and Solutions.

\#1. Let f be a Lebesgue measurable function on \mathbb{R}^{1} such that

$$
f(x+y)=f(x)+f(y) \quad \text { for all } \quad x, y \in \mathbb{R}^{1}
$$

Show that $f(x)=c x$ for some constant c.
Proof. We rely on the definition of a Lebesgue measurable function $f: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ on p . 44, which does not assume values $\pm \infty$. The statement is easily extended to functions $f=f_{1}+i f_{2}: \mathbb{R}^{1} \rightarrow \mathbb{C}$, where f_{1} and f_{2} are real-valued functions. Indeed, from $f(x+y)=f(x)+f(y)$ it follows $f_{1,2}(x+y)=f_{1,2}(x)+f_{1,2}(y)$. If the statement holds true for $f_{1,2}$, then $f_{1,2}(x)=c_{1,2} x$, and $f(x)=c x$ with $c:=c_{1}+i c_{2}$.

Note that the statement in Homework 5, Problem 2, was proved under the assumption $|f|<\infty$ a.e. It can be applied to both functions f and $-f$, because

$$
f\left(\frac{x+y}{2}\right)=\frac{1}{2} \cdot\left[f\left(\frac{x+y}{2}\right)+f\left(\frac{x+y}{2}\right)\right]=\frac{f(x+y)}{2}=\frac{f(x)+f(y)}{2} .
$$

Therefore, both functions f and $-f$ are convex, which is only possible if $f(x)$ is a linear function. Finally, $f(0)=f(0+0)=f(0)+f(0)$, so that $f(0)=0$, and $f(x)=c x$ for some constant c.
\#2. Let f, g be function in the linear space $L^{p}(X, \mathcal{M}, \mu), 0<p<\infty$, with quasinorm

$$
\|f\|_{p}:=\left(\int|f|^{p} d \mu\right)^{1 / p}
$$

Show that

$$
\|f+g\|_{p} \leq K(p) \cdot\left(\|f\|_{p}+\|g\|_{p}\right)
$$

where $K(p)$ is a constant such that $K(p) \searrow 1$ as $p \nearrow 1$.
Proof. It is known that $\|\cdot\|_{p}$ is a norm (i.e. $K(p)=1$) if $p \geq 1$, so that it suffices to consider the case $0<p<1$. Note that

$$
\begin{equation*}
|f+g|^{p} \leq|f|^{p}+|g|^{p} \quad \text { for } \quad 0<p<1 \tag{1}
\end{equation*}
$$

Indeed, one can assume that $f>0, g>0$. Then (1) is equivalent to

$$
1 \leq F(t):=t^{p}+(1-t)^{p}, \quad \text { where } \quad t:=\frac{f}{f+g} \in(0,1)
$$

Since $F^{\prime \prime}(t)=p(p-1) \cdot\left[t^{p-2}+(1-t)^{p-2}\right]<0$ on $(0,1)$, the function $F(t)$ is concave on $[0,1]$. In addition, $F(0)=F(1)=1$, and the inequality $F(t) \geq 1$ follows.

Using (1), one can write

$$
\int|f+g|^{p} d \mu \leq A_{1}+A_{2}, \quad \text { where } \quad A_{1}:=\int|f|^{p} d \mu, \quad A_{2}:=\int|g|^{p} d \mu
$$

Now Hölder's inequality with $p_{1}:=1 / p>1,1 / q_{1}=1-1 / p_{1}=1-p$, implies

$$
A_{1}+A_{2}=\sum_{j=1}^{2} 1 \cdot A_{j} \leq 2^{1 / q_{1}} \cdot\left(\sum_{j=1}^{2} A_{j}^{p_{1}}\right)^{1 / p_{1}}=2^{1 / q_{1}} \cdot\left(\|f\|_{p}+\|g\|_{p}\right)^{p}
$$

which in turn yields the desired inequality

$$
\|f+g\|_{p} \leq\left(A_{1}+A_{2}\right)^{1 / p} \leq K(p) \cdot\left(\|f\|_{p}+\|g\|_{p}\right), \quad \text { where } \quad K(p):=2^{\frac{1-p}{p}}=2^{\frac{1}{p}-1} \searrow 1 \quad \text { as } \quad p \nearrow 1
$$

\#3. Let A and B be disjoint convex compact sets in \mathbb{R}^{n}.
(a). Show that there exist $a \in A$ and $b \in B$ such that

$$
|a-b|=\min \{|x-y|: x \in A, y \in B\}
$$

(b). Use this fact to prove that there is a linear function $l(x):=c_{0}+(c, x)$ with constants $c_{0} \in \mathbb{R}^{1}$ and $c \in \mathbb{R}^{n}$, such that $l(x)<0$ on A, and $l(x)>0$ on B.

Proof. (a). Since A and B are bounded, there are sequences $\left\{x_{j}\right\} \subseteq A$ and $\left\{y_{j}\right\} \subseteq B$, such that

$$
\left|x_{j}-y_{j}\right| \rightarrow d(A, B):=\inf \{|x-y|: x \in A, y \in B\} \quad \text { as } \quad j \rightarrow \infty
$$

By compactness of A, there is a convergent subsequence $a_{k}:=x_{j_{k}} \rightarrow a \in A$ as $k \rightarrow \infty$. Then

$$
\lim _{k \rightarrow \infty}\left|a-b_{k}\right|=\lim _{k \rightarrow \infty}\left|a_{k}-b_{k}\right|=d(A, B), \quad \text { where } \quad b_{k}:=y_{j_{k}}
$$

By compactness of B, there is a convergent subsequence $b_{k_{l}} \rightarrow b \in B$ as $l \rightarrow \infty$. Finally,

$$
|a-b|=\lim _{l \rightarrow \infty}\left|a-b_{k_{l}}\right|=d(A, B)
$$

One can write "min" in place of "inf" in the definition of $d(A, B)$, because it is attained at the points $x=a, y=b$.
(b). We define

$$
l(x):=\left(c, x-x_{0}\right), \quad \text { where } \quad c:=b-a \neq 0, \quad x_{0}:=\frac{1}{2} \cdot(b+a) .
$$

Of course, one can rewrite it as $l(x)=c_{0}+(c, x)$ with $c_{0}:=-\left(c, x_{0}\right)$. It is easy to see that

$$
l(a)=-\frac{1}{2} \cdot|b-a|^{2}<0<l(b)=\frac{1}{2} \cdot|b-a|^{2} .
$$

We claim that

$$
\begin{equation*}
l(x) \leq l(a)<0 \quad \text { on } \quad A, \quad l(x) \geq l(b)<0 \quad \text { on } \quad B . \tag{2}
\end{equation*}
$$

This means that A and B are separated in \mathbb{R}^{n} by the strip $\left\{x \in \mathbb{R}^{n}: l(a)<l(x)<l(b)\right\}$.
We will derive (2) by a contradiction argument. Indeed, suppose that $l(p)>l(a)$ at some point $p \in A$. By convexity of A,

$$
a+\varepsilon v \in A \quad \text { for every } \quad \varepsilon \in[0,1], \quad \text { where } \quad v:=p-a \neq 0
$$

Note that $(v, c)=(p, c)-(a, c)=l(p)-l(a)>0$. Since $a+\varepsilon v \in A$ and $b \in B$, we get for small $\varepsilon>0$:

$$
|c|^{2}=|a-b|^{2}=d^{2}(A, B) \leq|a+\varepsilon v-b|^{2}=|\varepsilon v-c|^{2}=\varepsilon^{2}|v|^{2}-2 \varepsilon(v, c)+|c|^{2}<|c|^{2} .
$$

This contradiction proves the first assertion in (2). The second one can be proved quite similarly.
\#4. For $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and $g \in L^{p}\left(\mathbb{R}^{n}\right)$ with $p \geq 1$, show that the convolution

$$
(f * g)(x):=\int_{\mathbb{R}^{n}} f(x-y) g(y) d y
$$

belongs to $L^{p}\left(\mathbb{R}^{n}\right)$ and satisfies $\|f * g\|_{p} \leq\|f\|_{1} \cdot\|g\|_{p}$.
Proof. This property is obvious in the case $p=\infty$, so we assume that $1 \leq p<\infty$. Without loss of generality, we can also assume that $f \geq 0, g \geq 0$, and moreover, f and g are bounded functions vanishing outside a compact set in \mathbb{R}^{n}. The general case follows easily by the monotone convergence theorem.

Let q be a conjugate exponent to p, i.e. $p^{-1}+q^{-1}=1$. By the Riesz representation in Proposition 6.13 , we have

$$
\|f * g\|_{p}=\sup _{\|h\|_{q} \leq 1} \int(f * g) h d x
$$

Here by the Fubini-Tonelli theorem and Hölder's inequality,

$$
\int(f * g) h d x=\int f(y)\left[\int g(x-y) h(x) d x\right] d y \leq \int f(y) \cdot\|g\|_{p} \cdot\|h\|_{q} d y=\|f\|_{1} \cdot\|g\|_{p} \cdot\|h\|_{q}
$$

Therefore, $\|f * g\|_{p} \leq\|f\|_{1} \cdot\|g\|_{p}$.
\#5. Consider the Dirichlet kernel

$$
K_{\varepsilon}(x):=\frac{\sin \left(\varepsilon^{-1} x\right)}{\pi x}, \quad x \in \mathbb{R}^{1}, \quad \varepsilon>0
$$

(a). Show that for every continuous function f with compact support in \mathbb{R}^{1}, we have

$$
\int_{\mathbb{R}^{1}}\left|f_{\varepsilon}\right|^{2} d x \leq C \cdot \int_{\mathbb{R}^{1}}|f|^{2} d x, \quad \text { where } \quad f_{\varepsilon}:=K_{\varepsilon} * f
$$

with a positive constant C. Find the smallest possible C.
(b). Let

$$
f(x)=\sum_{k=1}^{\infty} \frac{\sin \left(2^{k^{3}} x\right)}{k^{2}}, \quad 0 \leq x \leq \pi ; \quad \text { and } \quad f \equiv 0 \quad \text { on } \quad \mathbb{R}^{1} \backslash[0, \pi]
$$

Show that

$$
\lim _{\varepsilon \searrow 0}\left|f_{\varepsilon}(0)\right|=\infty
$$

Proof. (a). Note that

$$
K_{\varepsilon}(\omega)=\frac{\sin \left(\varepsilon^{-1} \omega\right)}{\pi \omega}=\frac{1}{2 \pi} \int_{-1 / \varepsilon}^{1 / \varepsilon} \cos \omega x d x=\frac{1}{2 \pi} \cdot F\left[I_{\varepsilon}\right]
$$

where I_{ε} is the indicator of $[-1 / \varepsilon, 1 / \varepsilon]$. Comparing formulas for the direct and inverse Fourier transforms (formulas (1) and (2) in Appendix 1), we get

$$
\begin{aligned}
& F\left[K_{\varepsilon}\right]=2 \pi \cdot F^{-1}\left[K_{\varepsilon}\right]=I_{\varepsilon} \\
& \Longrightarrow \quad\left|F\left[f_{\varepsilon}\right]\right|=\left|F\left[K_{\varepsilon} * f\right]\right|=\left|F\left[K_{\varepsilon}\right] \cdot F[f]\right| \leq|F[f]| \quad \Longrightarrow \quad\left\|F\left[f_{\varepsilon}\right]\right\|_{2} \leq\|F[f]\| .
\end{aligned}
$$

By the Plancherel Theorem 8.29 (or equality (11) in Appendix 1), we get $\left\|f_{\varepsilon}\right\|_{2} \leq\|f\|_{2}$, i.e. one can take $C=1$. This is a minimal possible constant, because by the dominated convergence theorem,

$$
2 \pi \cdot \lim _{\varepsilon \searrow 0} \int\left|f_{\varepsilon}\right|^{2} d x=\lim _{\varepsilon \searrow 0} \int\left|F\left[f_{\varepsilon}\right]\right|^{2} d \omega=\lim _{\varepsilon \searrow 0} \int\left|I_{\varepsilon} \cdot F[f]\right|^{2} d \omega=\int|F[f]|^{2} d \omega=2 \pi \cdot \int|f|^{2} d x
$$

(b). We take $\varepsilon=\varepsilon_{n}=2^{-n^{3}}$. Then

$$
f_{\varepsilon}(0)=\int_{0}^{\pi} f(t) K_{\varepsilon}(-t) d t=\sum_{k=1}^{\infty} I_{k}, \quad \text { where } \quad I_{k}=\frac{1}{k^{2}} \int_{0}^{\pi} \frac{\sin \left(2^{n^{3}} t\right) \sin \left(2^{k^{3}} t\right)}{\pi t} d t
$$

Note that for $A \geq 2 B>0$,

$$
\begin{gathered}
\int_{0}^{\pi} \frac{\sin A t \cdot \sin B t}{t} d t=\int_{0}^{\pi} \frac{1-\cos (A+B) t}{2 t} d t-\int_{0}^{\pi} \frac{1-\cos (A-B) t}{2 t} d t \\
=\left(\int_{0}^{(A+B) \pi}-\int_{0}^{(A-B) \pi}\right) \frac{1-\cos s}{2 s} d s=\int_{(A-B) \pi}^{(A+B) \pi} \frac{1-\cos s}{2 s} d s
\end{gathered}
$$

It follows

$$
0 \leq \int_{0}^{\pi} \frac{\sin A t \cdot \sin B t}{t} d t \leq \int_{(A-B) \pi}^{(A+B) \pi} \frac{d s}{s}=\ln \frac{A+B}{A-B} \leq \ln 3
$$

Therefore,

$$
0 \leq \sum_{k \neq n} I_{k} \leq \sum_{k \neq n} \frac{\ln 3}{k^{2} \pi}<\sum_{k=1}^{\infty} \frac{\ln 3}{k^{2} \pi}=: C_{0}=\text { const }<\infty
$$

On the other hand, for $A=B=2^{n^{3}}$,

$$
\begin{aligned}
\int_{0}^{\pi} \frac{\sin ^{2} A t}{t} d t & =\int_{0}^{2 A \pi} \frac{1-\cos s}{2 s} d s \geq \int_{2 \pi}^{2 A \pi} \frac{1-\cos s}{2 s} d s=\frac{\ln A}{2}-\int_{2 \pi}^{2 A \pi} \frac{d(\sin s)}{2 s}=\frac{\ln A}{2}-\int_{2 \pi}^{2 A \pi} \frac{\sin s d s}{2 s^{2}} \\
& >\frac{\ln A}{2}-\int_{1}^{\infty} \frac{d s}{2 s^{2}}=\frac{\ln A-1}{2}=\frac{n^{3} \ln 2-1}{2}
\end{aligned}
$$

Hence

$$
I_{n}:=\frac{1}{n^{2}} \int_{0}^{\pi} \frac{\sin ^{2}\left(2^{n^{3}} t\right)}{\pi t} d t=\frac{n^{3} \ln 2-1}{2 \pi n^{2}} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty
$$

This implies

$$
f_{\varepsilon_{n}}(0)=I_{n}+\sum_{k \neq n} I_{k} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty
$$

\#6. Consider the family of functions on \mathbb{R}^{1} :

$$
K_{\varepsilon}(x):=\frac{\varepsilon}{\pi\left(x^{2}+\varepsilon^{2}\right)}, \quad \varepsilon>0
$$

Show that the convolution

$$
K_{\varepsilon_{1}} * K_{\varepsilon_{2}} \equiv K_{\varepsilon_{1}+\varepsilon_{2}} \quad \text { for } \quad \varepsilon_{1}, \varepsilon_{2}>0
$$

Proof. By Example 2 in Appendix 1, the Fourier transform $F\left[K_{\varepsilon}\right](\omega)=e^{-\varepsilon|\omega|}$. Therefore,

$$
\begin{aligned}
F\left[K_{\varepsilon_{1}} * K_{\varepsilon_{2}}\right](\omega) & =F\left[K_{\varepsilon_{1}}\right](\omega) \cdot F\left[K_{\varepsilon_{2}}\right](\omega) \\
& =e^{-\varepsilon_{1}|\omega|} \cdot e^{-\varepsilon_{2}|\omega|}=e^{-\left(\varepsilon_{1}+\varepsilon_{2}\right)|\omega|}=F\left[K_{\varepsilon_{1}+\varepsilon_{2}}\right](\omega) \text { for } \varepsilon_{1}, \varepsilon_{2}>0
\end{aligned}
$$

Since F is invertible in L^{2}, this implies the desired identity.

