
Math 8602. February 24, 2016. Midterm Exam 1. Problems and Solutions.

Problem 1. Let f, f1, f2, · · · be Lebesque integrable functions on Rn, such that∫
|fk − f | → 0 as k → ∞. (1)

Show that
(a)

sup
k

∫
|fk| ≤ C = const < ∞;

(b)

sup
k

∫
{|fk|≥N}

|fk| → 0 as N → ∞.

Proof. 1(a). From (1) it follows that for every ε > 0, there exists a constant Kε such that∫
|fk − f | ≤ ε for every k ≥ Kε.

In particular, using this property with ε = 1, we conclude that the sequence
∫
|fk − f | is bounded,

therefore,

sup
k

∫
|fk| ≤

∫
|f |+

∫
|fk − f | ≤ C = const < ∞.

1(b). Further, for each k = 1, 2, . . ., the Lebesgue measure of the set Ek,N := {|fk| ≥ N},

m(Ek,N ) =

∫
Ek,N

1 ≤ 1

N
·
∫

Ek,N

|fk| ≤
C

N
.

By absolute continuity of the Lebesque integral,

sup
k

∫
Ek,N

|f | → 0 as N → ∞.

and for each k = 1, 2, . . ., ∫
Ek,N

|fk| → 0 as N → ∞.

Therefore, for each ε > 0,

lim sup
N→∞

sup
k

∫
Ek,N

|fk| ≤ lim sup
N→∞

sup
k≥Kε

(∫
|fk − f |+

∫
Ek,N

|f |
)

≤ ε.

Since ε > 0 is arbitrary, the property (b) follows.

Problem 2. Let f, f1, f2, · · · be Lebesque integrable functions on a unit ball B ⊂ Rn, such that
fk → f a.e. as k → ∞. In the previous problem, where all the integrals are taken over B, show that
from (a) and (b) it follows (1). Verify whether or not this is true with Rn in place of B.
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Proof. For fixed N ≥ 1,

f
(N)
k := min

{
|fk|, N

}
→ f (N) := min

{
|f |, N

}
a.e. in B as k → ∞.

By the dominated convergence theorem,∫
|f (N)

k − f (N)| → 0 as k → ∞, and

∫
|f (N) − f | → 0 as N → ∞.

Note that we always have

|fk − f | ≤ |f (N)
k − f (N)|+ |f (N) − f |+ |f (N)

k − fk|.

From (b) it follows that

sup
k

∫
|fk − f | = sup

k

∫
Ek,N

|fk −N | ≤ sup
k

∫
Ek,N

|fk| → 0 as N → ∞.

Therefore,

lim sup
k→∞

∫
|fk − f | ≤

∫
|f (N) − f |+ sup

k

∫
Ek,N

|fk| → 0 as N → ∞.

This brings us to (1). Note that the property (a) was not used in the proof. In fact, it follows
automatically from (b), because

|fk ≤ |fk| · IEk,N
+N.

For Rn in place of B, the properties (a) and (b) do not imply (1): in the case n = 1,

fk :=
1

k
· I(0,k) → f ≡ 0 as k → ∞, with

∫
|fk − f | = 1 for all k.

Problem 3. Let F be a real-valued absolutely continuous function on [0, 1] and let its derivative
F ′ = 0 a.e. on a set E ⊆ [0, 1]. Show that the Lebesgue measure m(F (E)) = 0.

Proof. Since F is absolutely continuous on [0, 1], by Theorem 3.35, there exists f := F ′ ∈ L1([0, 1])
a.e. By regularity of the Borel measure dν := |f | dm (Theorem 1.18 in the textbook, or Theorem I-6
in lecture notes), for an arbitrary ε > 0 there is an open set G ⊃ E such that ν(G) < ν(E) + ε. Here
we assume that f is extended as f ≡ 0 on R1 \ [0, 1].

Since f = 0 a.e. on E, we have ν(E)=0, so that ν(G) < ε. Moreover, an open set G is represented
as at most countable union of open intervals Ij . Therefore,

m
(
F (E)

)
⊆ m

(
F (G)

)
≤

∑
j

m
(
F (Ij)

)
≤

∑
j

∫
Ij

|f | dx =

∫
G

|f | dx = ν(G) < ε,

and since ε > 0 is arbitrary, we must have m(F (E)) = 0.

Problem 4. Let (X, T ) be a topological space, and let A be dense in X, i.e. A = X. Then for
any open set U , we have U = U ∩A.

Proof. Note that the set V := U\U ∩A is open, and V ∩A = ∅. Then also V = V ∩X = V ∩A = ∅,
which means U ⊆ U ∩A, hence U ⊆ U ∩A. The opposite inclusion is trivial, because U ∩A ⊆ U .
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