
Math 8602. April 6, 2016. Midterm Exam 2. Problems and Solutions.

Problem 1. Show that for any two Borel measurable sets E1, E2 ⊆ R1 with finite Borel
measure, the convolution

f(x) =
(
IE1 ∗ IE2

)
(x) :=

∫
R1

IE1(x− y)IE2(y) dy,

where IE(y) = 1 if y ∈ E, and IE(y) = 0 if y /∈ E, is continuous on R1.

Proof. Both functions IE1 and IE2 belong to L1 := L1(R1), so that they can be
approximated in L1 by continuous functions with compact support (Theorem 2.41 on p.70).
For a fixed ε > 0, choose such a function g for which the norm in L1, ||IE1 − g||1 ≤ ε/2. Then
the function f1 := g ∗ IE2 satisfies∣∣(f − f1)(x)

∣∣ = ∣∣∣(IE1 − g) ∗ IE2(x)
∣∣∣ ≤ ||IE1 − g||1 ≤ ε/2, ∀x ∈ R1.

Hence

|f(x+ h)− f(x)| ≤ |f1(x+ h)− f1(x)|+ 2 · sup |f − f1| ≤ |f1(x+ h)− f1(x)|+ ε, ∀x, h ∈ R1.

By Theorem 2.27 (a) on p.56, the function f1 is continuous on R1. Therefore,

lim sup
h→0

|f(x+ h)− f(x)| ≤ ε, ∀x ∈ R1.

Since ε > 0 is arbitrary, f is continuous.

Problem 2. (a). Let K be a nonempty closed set in Rn. Show that for every ε > 0,
the sets

Kε := {x ∈ Rn : dist(x,K) ≤ ε} are closed in Rn.

(b). Let Kj be a sequence of nonempty compact sets in Rn, such that K1 ⊇ K2 ⊇ · · · .
Set K :=

∩
j

Kj. Show that for every ε > 0, there exists a constant N = N(ε) such that

Kj ⊆ Kε, ∀j ≥ N .
Proof. (a). Taking the infimum over y ∈ K in the inequality |x1−y| ≤ |x2−y|+ |x1−x2|,

we see that the distance function d(x) := dist(x,K) := inf{|x− y| : y ∈ K} satisfies
d(x1) ≤ d(x2) + |x1 − x2|. By symmetry, we always have

|d(x1)− d(x2)| ≤ |x1 − x2|, ∀x1, x2 ∈ Rn.

In particular, d(x) is continuous, and Kε = d−1([0, ε]) is closed.
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(b). The compact set

F := K1 ∩ {d(x) ≥ ε} ⊆ Kc =
∞∪
j=1

Kc
j ,

where Kc
j are open. Therefore, F ⊆ Kc

N for some N , and

Kj ⊆ KN ⊆ (F c) ∩K1 ⊆ {d(x) < ε} ⊆ Kε, ∀j ≥ N.

Problem 3. Let f, f1, f2, · · · be real measurable functions on R, such that fn → f almost
everywhere (a.e.) as n → ∞, and∫

R

f(x) dx = 1,

∫
R

fn(x) dx = 1, and fn ≥ 0 for all n.

(a). Show that fn → f in L1(R) as n → ∞.

(b). Show that (a) may fail if the assumption
∫
R
f(x) dx = 1 is dropped.

(c). Show that (a) may fail if the assumption fn ≥ 0 is dropped.

Proof. (a). We have 0 ≤ gn := min{f, fn} ≤ f ∈ L1, and gn → f a.e. By the Dominated
Convergence Theorem, ∫

R

gndx →
∫
R

f dx = 1 as n → ∞.

Moreover, it is easy to see that |fn − f | = fn + f − 2gn. Therefore,∫
R

|fn − f | dx =

∫
R

fndx+

∫
R

f dx− 2

∫
R

gndx = 2− 2

∫
R

gndx → 0 as n → ∞.

(b). fn := I(n,n+1) → f ≡ 0 a.e., but not in L1.

(c). fn := I(0,1) − I(n,n+1) + I(n+1,n+2) → f := I(0,1) a.e., but not in L1.

Problem 4. Let f(x) be a continuous function on [−1, 1], such that

1∫
−1

xkf(x) dx = 0 for all k = 0, 1, 2, . . . .

Show that f ≡ 0 on [−1, 1].

Proof. From linearity it follows that

1∫
−1

pf dx = 0 for every polynomial p.

By the Weierstrass theorem, f(x) can be approximated by a sequence of polynomials pn
uniformly on [−1, 1]. Then we must have

1∫
−1

f 2dx = lim
n→∞

1∫
−1

pnf dx = 0, and f ≡ 0 on [−1, 1].
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