Math 8602. April 6, 2016. Midterm Exam 2. Problems and Solutions.

Problem 1. Show that for any two Borel measurable sets $E_{1}, E_{2} \subseteq \mathbb{R}^{1}$ with finite Borel measure, the convolution

$$
f(x)=\left(I_{E_{1}} * I_{E_{2}}\right)(x):=\int_{\mathbb{R}^{1}} I_{E_{1}}(x-y) I_{E_{2}}(y) d y
$$

where $I_{E}(y)=1$ if $y \in E$, and $I_{E}(y)=0$ if $y \notin E$, is continuous on \mathbb{R}^{1}.
Proof. Both functions $I_{E_{1}}$ and $I_{E_{2}}$ belong to $L^{1}:=L^{1}\left(\mathbb{R}^{1}\right)$, so that they can be approximated in L^{1} by continuous functions with compact support (Theorem 2.41 on p.70). For a fixed $\varepsilon>0$, choose such a function g for which the norm in $L^{1},\left\|I_{E_{1}}-g\right\|_{1} \leq \varepsilon / 2$. Then the function $f_{1}:=g * I_{E_{2}}$ satisfies

$$
\left|\left(f-f_{1}\right)(x)\right|=\left|\left(I_{E_{1}}-g\right) * I_{E_{2}}(x)\right| \leq\left\|I_{E_{1}}-g\right\|_{1} \leq \varepsilon / 2, \quad \forall x \in \mathbb{R}^{1}
$$

Hence
$|f(x+h)-f(x)| \leq\left|f_{1}(x+h)-f_{1}(x)\right|+2 \cdot \sup \left|f-f_{1}\right| \leq\left|f_{1}(x+h)-f_{1}(x)\right|+\varepsilon, \quad \forall x, h \in \mathbb{R}^{1}$.
By Theorem 2.27 (a) on p. 56 , the function f_{1} is continuous on \mathbb{R}^{1}. Therefore,

$$
\limsup _{h \rightarrow 0}|f(x+h)-f(x)| \leq \varepsilon, \quad \forall x \in \mathbb{R}^{1}
$$

Since $\varepsilon>0$ is arbitrary, f is continuous.
Problem 2. (a). Let K be a nonempty closed set in \mathbb{R}^{n}. Show that for every $\varepsilon>0$, the sets

$$
K^{\varepsilon}:=\left\{x \in \mathbb{R}^{n}: \operatorname{dist}(x, K) \leq \varepsilon\right\} \text { are closed in } \mathbb{R}^{n}
$$

(b). Let K_{j} be a sequence of nonempty compact sets in \mathbb{R}^{n}, such that $K_{1} \supseteq K_{2} \supseteq \cdots$. Set $K:=\bigcap K_{j}$. Show that for every $\varepsilon>0$, there exists a constant $N=N(\varepsilon)$ such that $K_{j} \subseteq K^{\varepsilon}, \forall_{j}^{j} \geq N$.

Proof. (a). Taking the infimum over $y \in K$ in the inequality $\left|x_{1}-y\right| \leq\left|x_{2}-y\right|+\left|x_{1}-x_{2}\right|$, we see that the distance function $d(x):=\operatorname{dist}(x, K):=\inf \{|x-y|: y \in K\}$ satisfies $d\left(x_{1}\right) \leq d\left(x_{2}\right)+\left|x_{1}-x_{2}\right|$. By symmetry, we always have

$$
\left|d\left(x_{1}\right)-d\left(x_{2}\right)\right| \leq\left|x_{1}-x_{2}\right|, \quad \forall x_{1}, x_{2} \in \mathbb{R}^{n}
$$

In particular, $d(x)$ is continuous, and $K^{\varepsilon}=d^{-1}([0, \varepsilon])$ is closed.
(b). The compact set

$$
F:=K_{1} \cap\{d(x) \geq \varepsilon\} \subseteq K^{c}=\bigcup_{j=1}^{\infty} K_{j}^{c}
$$

where K_{j}^{c} are open. Therefore, $F \subseteq K_{N}^{c}$ for some N, and

$$
K_{j} \subseteq K_{N} \subseteq\left(F^{c}\right) \cap K_{1} \subseteq\{d(x)<\varepsilon\} \subseteq K^{\varepsilon}, \quad \forall j \geq N .
$$

Problem 3. Let f, f_{1}, f_{2}, \cdots be real measurable functions on \mathbb{R}, such that $f_{n} \rightarrow f$ almost everywhere (a.e.) as $n \rightarrow \infty$, and

$$
\int_{\mathbb{R}} f(x) d x=1, \quad \int_{\mathbb{R}} f_{n}(x) d x=1, \quad \text { and } \quad f_{n} \geq 0 \quad \text { for all } n .
$$

(a). Show that $f_{n} \rightarrow f$ in $L^{1}(R)$ as $n \rightarrow \infty$.
(b). Show that (a) may fail if the assumption $\int_{\mathbb{R}} f(x) d x=1$ is dropped.
(c). Show that (a) may fail if the assumption $f_{n} \geq 0$ is dropped.

Proof. (a). We have $0 \leq g_{n}:=\min \left\{f, f_{n}\right\} \leq f \in L^{1}$, and $g_{n} \rightarrow f$ a.e. By the Dominated Convergence Theorem,

$$
\int_{\mathbb{R}} g_{n} d x \rightarrow \int_{\mathbb{R}} f d x=1 \quad \text { as } \quad n \rightarrow \infty
$$

Moreover, it is easy to see that $\left|f_{n}-f\right|=f_{n}+f-2 g_{n}$. Therefore,

$$
\int_{\mathbb{R}}\left|f_{n}-f\right| d x=\int_{\mathbb{R}} f_{n} d x+\int_{\mathbb{R}} f d x-2 \int_{\mathbb{R}} g_{n} d x=2-2 \int_{\mathbb{R}} g_{n} d x \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

(b). $f_{n}:=I_{(n, n+1)} \rightarrow f \equiv 0$ a.e., but not in L^{1}.
(c). $f_{n}:=I_{(0,1)}-I_{(n, n+1)}+I_{(n+1, n+2)} \rightarrow f:=I_{(0,1)}$ a.e., but not in L^{1}.

Problem 4. Let $f(x)$ be a continuous function on $[-1,1]$, such that

$$
\int_{-1}^{1} x^{k} f(x) d x=0 \quad \text { for all } \quad k=0,1,2, \ldots
$$

Show that $f \equiv 0$ on $[-1,1]$.
Proof. From linearity it follows that

$$
\int_{-1}^{1} p f d x=0 \quad \text { for every polynomial } \quad p
$$

By the Weierstrass theorem, $f(x)$ can be approximated by a sequence of polynomials p_{n} uniformly on $[-1,1]$. Then we must have

$$
\int_{-1}^{1} f^{2} d x=\lim _{n \rightarrow \infty} \int_{-1}^{1} p_{n} f d x=0, \quad \text { and } \quad f \equiv 0 \quad \text { on } \quad[-1,1] .
$$

