Math 8602: REAL ANALYSIS. Spring 2016
Homework \#1 (due on Wednesday, February 3).
40 points are divided between 4 problems, 10 points each.
\#1. Let C be a collection of open balls in \mathbb{R}^{n}. Show that there exists a finite or countable subset $C_{1} \subseteq C$ such that

$$
\bigcup_{B \in C_{1}} B=\bigcup_{B \in C} B
$$

\#2. By definition on p . 95, a measurable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is locally integrable $\left(f \in L_{\text {loc }}^{1}\right)$ if

$$
\int_{K}|f(x)| d x<\infty \quad \forall \text { bounded measurable } \quad K \subset \mathbb{R}^{n} .
$$

Show that this definition is equivalent to the following:

$$
\forall x \in \mathbb{R}^{n}, \quad \exists r>0 \quad \text { such that } \int_{B_{r}(x)}|f(x)| d x<\infty
$$

\#3. Let $d \nu=d \lambda+f d m$ be the Lebesgue-Radon-Nikodym decomposition of a finite real signed measure on \mathbb{R}^{n}. Show that for the total variations (defined on p. 87) we also have

$$
d|\nu|=d|\lambda|+|f| d m .
$$

\#4. For each $x \in[0,1]$, let

$$
x=\sum_{k=1}^{\infty} \frac{x_{k}}{2^{k}},
$$

where $x_{k}=0$ or 1 , so that x_{k} are functions of x with values 0 and 1 . Show that

$$
S_{n}(x)=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \rightarrow \frac{1}{2} \quad \text { as } \quad n \rightarrow \infty \quad \text { in measure on }[0,1] .
$$

Hint. First check that the functions

$$
f_{k}(x)=x_{k}(x)-\frac{1}{2}
$$

satisfy

$$
\int_{0}^{1} f_{j}(x) f_{k}(x) d x=0 \quad \text { for } \quad j \neq k
$$

